
Efficient Model Construction for Horn Logic with VLog:
System Description

Jacopo Urbani1, Markus Krözsch2, Ceriel Jacobs1, Irina Dragoste2, David Carral2

1Vrije Universiteit Amsterdam
2Technische Universität Dresden

Urbani, Kröztsch, Jacobs, Dragoste, and Carral Efficient Model Construction for Horn Logic 1 / 20



Motivation

Definition

Existential rules are expressions of the form

∀~x(B1 ∧ . . . ∧ Bk → ∃~v .H1 ∧ . . . ∧ Hl)

Practical relevance

Existential rules are very useful in several
scenarios:

Ontological reasoning

Data integration

Query answering

Knowledge base completion

. . .

Scientific Importance

They are studied in several communities

Databases

Logic programming

Semantic Web

. . .

Urbani, Kröztsch, Jacobs, Dragoste, and Carral Efficient Model Construction for Horn Logic 2 / 20



Challenges

The computation of existential rules requires the introduction of fresh individuals

Example

A common rule that captures part-whole relationship is:

Bicycle(x)→ ∃v .hasPart(x , v) ∧Wheel(v)

When we instantiate the head, x is known but v is not. We must introduce new values for it.

Urbani, Kröztsch, Jacobs, Dragoste, and Carral Efficient Model Construction for Horn Logic 3 / 20



The Chase

The chase is a class of reasoning algorithms for existential rules where rules are applied
bottom-up until saturation thus resulting in the computation of a universal model. Such a
model can then be used to directly solve query answering.

Warning: The chase may not always terminate.

Unfortunately, detecting termination is undecidable.

Detecting termination of a set of rules with respect to any set of facts is not even
semi-decidable.

Fortunately, decidable criteria that are sufficient for termination characterise many
real-world ontologies.

Urbani, Kröztsch, Jacobs, Dragoste, and Carral Efficient Model Construction for Horn Logic 4 / 20



The Chase

r - a rule β → ∃~v .η
D - a database

σ - a substitution mapping variables in β
to constants

〈r , σ〉 - applicable to D if βσ ⊆ D

Chase step: apply rule r to a database D

In each chase step, a single rule is being applied, with all possible substitutions.

The Chase

a sequence D0,D1, . . . of databases where D i+1 = D i ∪∆i+1

∆i+1 = all new derivations produced by a certain rule r in step i + 1.

Urbani, Kröztsch, Jacobs, Dragoste, and Carral Efficient Model Construction for Horn Logic 5 / 20



The Chase

The Skolem chase and restricted chase are two popular chase algorithms.

frontier(r) - all variables in the rule body that also appear in the rule head.

Skolem chase

A pair 〈r , σ〉 is not applied during the computation of the chase if 〈r , σ′〉 for some
σ′ ⊇ σfrontier(r) has already been applied.

Restricted chase

A pair 〈r , σ〉 is not applied a database D if there is a substitution π ⊇ σfrontier(r) that already
satisfies the rule with respect to D.

Urbani, Kröztsch, Jacobs, Dragoste, and Carral Efficient Model Construction for Horn Logic 6 / 20



Skolem Chase

r1 = Bicycle(x)→ ∃w .hasPart(x ,w) ∧Wheel(w) 7−→ B(x)→ hP(x ,w(x)) ∧W (w(x))

r2 = Wheel(x)→ ∃v .partOf (x , v) ∧ Bicycle(v) 7−→W (x)→ pO(x , v(x)) ∧ B(v(x))

r3 = hasPart(x , y)→ partOf (y , x)

D = {Bicycle(a)}

〈r1, [x → a]〉
hP(a,w(a))
W (w(a))

〈r3, [x → a, y → w(a)]〉
pO(w(a), a)

〈r2, [x → w(a)]〉
pO(w(a), v(w(a)))
B(v(w(a)))

〈r1, [x → v(w(a))]〉
hP(v(w(a)),w(v(w(a))))
W (w(v(w(a))))

. . .

Urbani, Kröztsch, Jacobs, Dragoste, and Carral Efficient Model Construction for Horn Logic 7 / 20



Restricted Chase

r1 = Bicycle(x)→ ∃w .hasPart(x ,w) ∧Wheel(w) 7−→ B(x)→ hP(x ,w(x)) ∧W (w(x))

r2 = Wheel(x)→ ∃v .partOf (x , v) ∧ Bicycle(v) 7−→W (x)→ pO(x , v(x)) ∧ B(v(x))

r3 = hasPart(x , y)→ partOf (y , x)

D = {Bicycle(a)}

〈r1, [x → a]〉
∃w .hP(a,w) ∧W (w)?

hP(a,w(a))
W (w(a))

〈r3, [x → a, y → w(a)]〉
pO(w(a), a)

〈r2, [x → w(a)]〉
∃v .pO(w(a), v) ∧ B(v)?

∆3=∅
D3 = D∞

Urbani, Kröztsch, Jacobs, Dragoste, and Carral Efficient Model Construction for Horn Logic 8 / 20



VLog

VLog (Vertical dataLog) is a novel system designed for the execution of Datalog programs as
well as reasoning over existential rules.

State-of-the-art performance, with excellent memory footprint and scalability

Implements the restricted and Skolem chase with a distinctive “set-at-a-time” processing

Freely available and easy to use

Outline

First, we will first take a
look at the performance

Then, we will discuss how
we achieved it

Finally, we will illustrate
how the system can be used

Urbani, Kröztsch, Jacobs, Dragoste, and Carral Efficient Model Construction for Horn Logic 9 / 20



VLog

VLog (Vertical dataLog) is a novel system designed for the execution of Datalog programs as
well as reasoning over existential rules.

State-of-the-art performance, with excellent memory footprint and scalability

Implements the restricted and Skolem chase with a distinctive “set-at-a-time” processing

Freely available and easy to use

Outline

First, we will first take a
look at the performance

Then, we will discuss how
we achieved it

Finally, we will illustrate
how the system can be used

Urbani, Kröztsch, Jacobs, Dragoste, and Carral Efficient Model Construction for Horn Logic 10 / 20



VLog: Performance

Considered datasets from a recent
chase benchmark (PODS’17) and
popular real-world OWL ontologies.

Size of the rulesets: 16-1300 rules
Size of the datasets: 1000-130M facts

As competitor, we chose RDFox:
A leading tool that outperforms other
state-of-the-art engines such as E,
DLV, GRAAL, and LLUNATIC.

Urbani, Kröztsch, Jacobs, Dragoste, and Carral Efficient Model Construction for Horn Logic 11 / 20



VLog: Performance

Considered datasets from a recent
chase benchmark (PODS’17) and
popular real-world OWL ontologies.

Size of the rulesets: 16-1300 rules
Size of the datasets: 1000-130M facts

As competitor, we chose RDFox:
A leading tool that outperforms other
state-of-the-art engines such as E,
DLV, GRAAL, and LLUNATIC.

Urbani, Kröztsch, Jacobs, Dragoste, and Carral Efficient Model Construction for Horn Logic 12 / 20



VLog

VLog (Vertical dataLog) is a novel system designed for the execution of Datalog programs as
well as reasoning over existential rules.

State-of-the-art performance, with excellent memory footprint and scalability

Implements the restricted and Skolem chase with a distinctive “set-at-a-time” processing

Freely available and easy to use

Outline

First, we will first take a
look at the performance

Then, we will discuss how
we achieved it

Finally, we will illustrate
how the system can be used

Urbani, Kröztsch, Jacobs, Dragoste, and Carral Efficient Model Construction for Horn Logic 13 / 20



Restricted Chase in VLog

Algorithm 1: applyRule (rule r,database D i )

1 foreach match σ of the body of r over D i , produced since the last application of r do
2 if the head of r is not satisfied by σ on D i then
3 create fresh nulls for existential variables in r

4 compute ∆i+1 as the new facts produced by r

5 return D i+1 = D i ∪∆i+1

Challenges:

Line 1: If the rule body is a conjunction of atoms, then expensive joins might be required

Line 4: Removing duplicates might be an expensive operation

Urbani, Kröztsch, Jacobs, Dragoste, and Carral Efficient Model Construction for Horn Logic 14 / 20



Chasing in VLog

The key idea of VLog is to store the facts column-by-column rather than row-by-row.

Example

Consider the atom hasPart(x , y) in our previous example and assume there are two facts
hasPart(a, b) and hasPart(c , d). In VLog, these facts are stored with two columns c1 = 〈a, c〉
and c2 = 〈b, d〉.

Why is it a good idea?

Line 1: Columns are kept sorted (whenever possible) to allow merge joins. Some
operations on facts can be translated as operations on columns.

Line 4: In some cases, we can infer whether a set of facts is already derived without
checking fact-by-fact.

Moreover, columns can be compressed more easily, or can be reused.

Urbani, Kröztsch, Jacobs, Dragoste, and Carral Efficient Model Construction for Horn Logic 15 / 20



VLog

VLog (Vertical dataLog) is a novel system designed for the execution of Datalog programs as
well as reasoning over existential rules.

State-of-the-art performance, with excellent memory footprint and scalability

Implements the restricted and Skolem chase with a distinctive “set-at-a-time” processing

Freely available and easy to use

Outline

First, we will first take a
look at the performance

Then, we will discuss how
we achieved it

Finally, we will illustrate
how the system can be
used

Urbani, Kröztsch, Jacobs, Dragoste, and Carral Efficient Model Construction for Horn Logic 16 / 20



VLog: Usability

Usability

Tool written in C++
→ Used as standalone program

It can also be accessed through a web interface → allows an interactive usage and
extensive debugging

We provide comprehensive Java API
→ Easily embedded in other systems
→ Automatically transforms OWL ontologies to rules

Other technical features

Works on all major OS with very few dependencies; Docker image provided

It can interface concurrently with several data sources: high-performance RDF stores,
relational databases, CSV files, RDF files, OWL ontologies, and remote SPARQL
endpoints → allows federated reasoning

Urbani, Kröztsch, Jacobs, Dragoste, and Carral Efficient Model Construction for Horn Logic 17 / 20



Conclusions

VLog: large-scale rule reasoner with excellent performance.

High-Performance

Fig. 1. Memory usage (left) and materialisation time (right) for VLog and RDFox

only a single thread, whereas RDFox used maximal parallelism and often achieved above
700% CPU utilisation. Comparing the chase variants, VLog used significantly less time
and memory for the restricted chase, except on deep-100, deep-200, and Ontology-256.
RDFox shows similar behaviour, though the additional cost on deep is more pronounced.
Nevertheless, the restricted chase seems to be the more e�cient algorithm in general.

6 Conclusions

VLog is a fast and memory-e�cient system for constructing models for Horn Logic.
We extended its set-at-a-time and columnar approach to handle existential rules and
discussed our implementation of the chase, which exhibits excellent performance.

The system is free and open source,5 with only few dependencies for optional
database connectors. Pre-compiled Docker images enable quick installation on major
platforms (Docker repository karmaresearch/vlog). Users can control VLog through a
command-line tool, a web interface (useful for demonstrating the system), and though
the Java bindings of the companion project VLog4j.6 The latter is available as a Maven
package that includes the necessary binaries for major operating systems. In the future,
we plan to add further expressive features, such as equality, negation, or aggregation.
This can make VLog useful in even more scenarios, and thereby further advance our
understanding of the potential of this architecture for automated reasoning in general.

5 C++ source code and documentation: https://github.com/karmaresearch/vlog
6 Java source code and documentation: https://github.com/mkroetzsch/vlog4j

Fig. 1. Memory usage (left) and materialisation time (right) for VLog and RDFox

only a single thread, whereas RDFox used maximal parallelism and often achieved above
700% CPU utilisation. Comparing the chase variants, VLog used significantly less time
and memory for the restricted chase, except on deep-100, deep-200, and Ontology-256.
RDFox shows similar behaviour, though the additional cost on deep is more pronounced.
Nevertheless, the restricted chase seems to be the more e�cient algorithm in general.

6 Conclusions

VLog is a fast and memory-e�cient system for constructing models for Horn Logic.
We extended its set-at-a-time and columnar approach to handle existential rules and
discussed our implementation of the chase, which exhibits excellent performance.

The system is free and open source,5 with only few dependencies for optional
database connectors. Pre-compiled Docker images enable quick installation on major
platforms (Docker repository karmaresearch/vlog). Users can control VLog through a
command-line tool, a web interface (useful for demonstrating the system), and though
the Java bindings of the companion project VLog4j.6 The latter is available as a Maven
package that includes the necessary binaries for major operating systems. In the future,
we plan to add further expressive features, such as equality, negation, or aggregation.
This can make VLog useful in even more scenarios, and thereby further advance our
understanding of the potential of this architecture for automated reasoning in general.

5 C++ source code and documentation: https://github.com/karmaresearch/vlog
6 Java source code and documentation: https://github.com/mkroetzsch/vlog4j

Columnar Approach to Reasoning

More possibilities for compression

Set-at-a-time processing

Efficient joins

Quick duplicates deletion

Where can I find it?

GitHub: (Core system) https://github.com/karmaresearch/vlog

(Java API) https://github.com/knowsys/vlog4j

Maven: org.semanticweb.vlog4j Docker: karmaresearch/vlog

We are looking for new application areas!
Urbani, Kröztsch, Jacobs, Dragoste, and Carral Efficient Model Construction for Horn Logic 18 / 20

https://github.com/karmaresearch/vlog
https://github.com/knowsys/vlog4j
org.semanticweb.vlog4j


Efficient Model Construction for Horn Logic with VLog:
System Description

Jacopo Urbani1, Markus Krözsch2, Ceriel Jacobs1, Irina Dragoste2, David Carral2

1Vrije Universiteit Amsterdam
2Technische Universität Dresden

Urbani, Kröztsch, Jacobs, Dragoste, and Carral Efficient Model Construction for Horn Logic 19 / 20



Supported Data Sources

Relational databases (MySQL, MonetDB and a generic ODBC source). A predicate is
mapped to a single relational table.

Trident, which is a high-performance in-house RDF graph engine. Maps the RDF
triples to a ternary predicate.

(zipped) CSV files. Maps to a predicate whose arity corresponds to the number of
columns in the CSV table. The table is loaded into main memory and dictionary-encoded.

(zipped) RDF files can be loaded directly into main memory, without being stored in a
database. The tripes are mapped to a ternary predicate. Alternatively, they can be
automatically translated into unary and binary facts (vlog4j-owlapi module).

OWL ontologies (input trough OWL API) are automatically transformed to in-memory
rules and facts using vlog4j-owlapi module.

In-memory Java objects that represent facts.

Remote SPARQL endpoints. A predicate maps to a user-defined SPARQL query. Can
be used to access local graph databases, or for federated query answering on the Web.

Urbani, Kröztsch, Jacobs, Dragoste, and Carral Efficient Model Construction for Horn Logic 20 / 20


