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Abstract. Among the recent trends in real-time visual SLAM, there has
been a move towards the construction of structure-rich maps. By using
landmarks more descriptive than point features, such as line or surface
segments, larger parts of the scene can be represented in a compact form.
This minimises redundancy and might allow applications such as object
detection and path planning. In this paper, we propose a probabilis-
tic map representation for planar surface segments. They are measured
directly using the image intensities of individual pixels in the camera
images. Preliminary experiments indicate that the motion of a camera
can be tracked more accurately than with traditional point features, even
when using only a single planar feature.

1 Introduction

In simultaneous localisation and mapping (SLAM), we are concerned with es-
timating the pose of a mobile robot and simultaneously building a map of the
environment it is navigating [1]. The problem is formulated in a Bayesian frame-
work where noisy measurements are integrated over time to create a probability
distribution of the state of a dynamical system, consisting of landmark positions
and the robot’s pose. Visual SLAM tackles this problem with only a camera
(monocular or stereo, typically hand-held) as a sensor.

Since the seminal work by Davison [2], the majority of existing systems for
visual SLAM build sparse maps representing 3D locations of scene points and
their associated uncertainties. This particular representation has been attractive
because it allows real-time operation whilst providing sufficient information for
reliable tracking of the camera pose. If we want to visual SLAM to move beyond
tracking applications, we need maps which allow geometric reasoning. Planar
structures allow a compact representation of large parts of the environment.
For tasks such as scene interpretation, robot navigation and the prediction of
visibility/occlusion of artificial objects in augmented reality, maps consisting of
planar features [3, 4] seem more suitable than wire frame models [5, 6].

In this paper, we propose a map representation for planar surface segments
within the framework of [2]. Those planes are measured directly using the image
intensities of individual pixels in the camera images.

Gee et al.[3] presented a visual SLAM system in which planar structural com-
ponents are detected and embedded within the map. Their goal is to compact



the representation of mapped points lying on a common plane. However these
planes are not directly observable in the camera images, but are inferred from
classical point feature measurements. Our approach has a closer relationship to
the works by Molton et al. [4] and Jin et al. [7]. We also use pixel measure-
ments directly to update estimates of plane parameters. Molton et al. [4] regard
feature points as small locally planar patches and estimate their normal vec-
tors. However, this is done outside of the SLAM filter, thus ignoring correlations
between normal vectors and rest of the state. While being useful for improv-
ing the observability of point features, their approach does not scale to larger
planar structures because these correlations cannot be neglected in this case.
Jin et al. [7] are able to handle larger planes but rely on the linearity of the
image gradient which limits their approach with respect to image motion and
tolerable camera acceleration. We solve this issue by casting the measurement
update in an iterative framework. Furthermore, our feature model employs an
inverse-depth parameterisation which has been shown to be more suitable to
linearisation than previous representations [8].

In the following section, we describe Davison’s framework [2] for visual SLAM.
In Sec. 3, we introduce our feature representation and measurement model. After
discussing details of the measurement process in Sec. 4, we present experimental
results for simulated and real scenarios in Sec. 5. Sec. 6 concludes the paper.

2 EKF-Based Visual SLAM

The task in visual SLAM is to infer the state of the system, i.e., the pose of the
camera and a map of the environment from a sequence of camera images. A com-
monly used and successful approach is to address the problem in a probabilistic
framework, using an Extended Kalman Filter (EKF) to recursively update an
estimate of the joint camera and map state [2, 5, 3, 4].

The belief about the state x of the system is modeled as a multivariate
Gaussian represented by its mean vector µx and covariance matrix Σx. The
state vector can be divided into parts describing the state of the camera xv and
of map features yi.

µx =


µxv

µy1

...
µyn

 Σx =


Σxvxv Σxvy1 . . . Σxvyn

Σy1xv Σy1y1 . . . Σy1yn

...
...

. . .
...

Σynxv Σyny1 . . . Σynyn

 (1)

The state estimate is updated sequentially using the predict-update cycle of
the EKF. Whenever a new image is acquired by the camera, measurements of
map features can be made and used to update the state estimate, resulting in a
decrease of uncertainty in the update step. In the prediction step, a process model
is used to project the estimate forward in time. The process model describes how
the state evolves during the period of “temporal blindness” between images.
Only the camera state xv is affected by the process model, because we assume



an otherwise static scene. The camera is assumed to be moving with constant
linear and angular velocity. The (unknown) accelerations that cause deviation
from this assumption are modeled as noise. This results in an increase of camera
state uncertainty in the prediction step. Similar to [2] we model the camera
state as xv =

(
r q v ω

)>. Position and orientation of the camera with respect
to a fixed world frame W are described by the 3D position vector r and the
quaternion q. Translational and angular velocity are described by v and ω.

The EKF update step integrates new information from measurements of map
features into the state estimate. A generative measurement model

z = h(xv,yi) + δ (2)

describes the measurement vector z as a function of the (true, unknown) state
of the camera xv and the feature yi. The result is affected by the zero-mean
measurement noise vector δ. The current estimate of the camera and feature
state can be used to predict the expected measurement. The difference between
the predicted and actual measurement is then used in the EKF to update the
state estimate.

In [2], a map feature yi =
(
x y z

)> describes the 3D coordinates of a fixed
point in the environment. A measurement of such a feature then consists of the
2D coordinates z = (u, v)> of the projection of this point into the current camera
image. To be able to actually make measurements, new features are initialised
on salient points in a camera image. With each new feature a small template
patch of its surrounding pixels in this initial image is stored. In subsequent
images, measurements of this feature are made by searching for the pixel with
maximal correlation to this template. This search is carried out in a elliptic
region determined by the predicted measurement and its uncertainty.

3 Feature Representation and Measurement Model

The template-matching approach to the measurement process works well as long
as the feature is observed from a viewpoint reasonably similar to the one used for
initialisation. To improve the viewpoint range from which a feature is observable,
we can try to predict the change in feature appearance due to changed viewpoint
prior to the correlation search. To do this, we assume that the feature is located
on a locally planar scene surface. Given the surface normal and the prior estimate
of the camera position the features template patch can be warped to give the
expected appearance in the current camera image. Simply assuming a surface
normal facing the camera in the initial image already introduces some tolerance
to changing viewing distance and rotation about the camera axis. Molton et al. [4]
go one step further by estimating the surface normal using multiple feature
observations from different viewpoints. Both approaches are aimed at improving
the stability of the template matching procedure by removing the effects of
varying viewpoint.

However, changes in feature appearance also provide information which can
be directly used to improve the state estimate. For instance if we observe that
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Fig. 1. The relative orientation of world frame W and template frame T is given by
translation c and rotation φ. The unit vector m defines a ray to the feature center, ρ
is the inverse depth along this ray. The plane normal is described by θ.

the scale of the observed image patch is larger than we expected, this tells us
that the camera is closer to the feature than we predicted. Also, the amount
of perspective distortion is directly related to the relative orientation between
the camera and scene surface. To exploit such information, modeling a feature
measurement as a single 2D coordinate as described above is not sufficient.

In the following, we describe a feature representation of planar segments in
the scene. A measurement model of such a planar features is developed directly
using the raw camera images, i.e., a measurement comprises a set of pixel in-
tensity values. In our system, features represent planar surface segments in the
environment. Such a segment is described in terms of its appearance in the image
where it was initially observed, and the position of the camera when this initial
image was taken, cf. Fig. 1.

For each feature, the initial camera image is stored as the template image
T : IR2 → IR. We assume that the outline of the compact image area correspond-
ing to the planar scene segment is known. Some (arbitrary) pixel within this area
is chosen as the feature center projection. The unit vector m is the ray from the
camera center through this pixel. Both T and m are fixed parameters, i.e., not
part of the probabilistic state.

In the EKF state vector, the i-th map feature is parametrised as

yi =
(
c φ ρ θ

)>
. (3)

The parameters c, φ describe the camera translation and rotation at the initial
observation. This initial camera coordinate frame is referred to as the template
frame T . The parameter ρ is the inverse depth1 measured along the ray defined
by m. The last component θ is the normal vector of the feature plane, encoded
in polar coordinates. Both θ and m are measured with respect to the template
frame T .

Having defined the feature representation, we can now proceed to formulate
a measurement model of the form (2). It is well-known from the computer vision

1 Inverse depth parameterisation was chosen, because it can cope with distant features
and its better suited to approximation by a Gaussian than depth [8].
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Fig. 2. The camera xv and feature state yi define a homography warp W between the
template and current image. W can be used to predict intensities in the current image
by looking up the intensities at the corresponding template pixels. The measurement
consists of the observed intensities inside the feature outline in the current image.

literature that two images of a plane are related by a homography transforma-
tion [9]. Thus, pixel coordinates in the current camera image and the template
image can be related through the homography induced by the feature plane. We
will denote by W( · ;xv,yi) the homography warp function which maps points
in the template image T to the corresponding points in the current image C,
cf. Fig. 2. The homography is fully determined by the orientation of both the
template and current camera coordinate frames, and the position and normal
of the feature plane. Therefore, W is parameterised by the current state of the
camera xv and the feature state yi. The exact form of the warp function can be
derived similarly to [4]. This is omitted here due to space limitations.

Using the warp function W( · ;µxv , µyi) parameterised on the prior state
estimate, we can project the features outline into the current image to determine
where we expect to observe the feature. Let U = {u1, . . . ,um} be the set of
pixel locations inside the expected projected outline. The measurement vector
z = (z1, . . . , zm)> consists of the intensities measured at these locations, i.e.,
zj = C(uj).

To formulate a generative model, we have to define the function h(xv,yi),
i.e., we have to express what we expect to measure given a certain camera and
feature state. The intensity we expect to measure at a given location uj in the
current image is the intensity at the corresponding location in the template
image. This corresponding location is computed using the inverse of the warp
function, W−1. Thus, the generative model for a single pixel is

zj = hj(xv,yi) + δj = T (W−1(uj ;xv,yi)) + δj (4)

where δj ∼ N (0, rj) is zero-mean Gaussian noise with variance rj , uncorrelated
between pixel locations.

4 Measurement Process

The EKF update step involves a linearisation of the measurement model, i.e., (2)
is replaced by its first-order Taylor expansion around the prior state estimate.



(a) (b) (c) (d) (e) (f)

Fig. 3. A real-world example of the measurement update iteration. (a) the current
image. (b) the predicted feature template. (c)-(d) show the difference between the
warped template and the current image. (c) before the first iteration, i.e., the difference
between (a) and (b). (d) after the first iteration with the restricted measurement model.
(e,f) after the second and third iteration which are performed using the full planar
measurement model.

For the proposed measurement model, (4) must be linearised for every intensity
measurement zj . This involves linearisation of the template image function T
around the template pixel position predicted as corresponding to uj . The inten-
sity in the neighbourhood of a template pixel is approximated using the image
gradients at that pixel. Image functions in general are highly non-linear. There-
fore, the linearised model used in the EKF will provide good approximation only
in a small region of state-space around the true state. To deal with this problem,
we use an Iterated Extended Kalman Filter (IEKF). The basic idea of the IEKF
is that because the posterior estimate is closer to the true state than the prior es-
timate, linearisation should rather be performed around the posterior estimate.
The update step is repeated several times, where in each iteration linearisation
is performed around the posterior estimate obtained in the previous iteration.
During rapid camera accelerations the prior estimate can be quite far from the
true state, rendering the initial linearisation of T useless. To guide the update
process to the correct region of convergence the first iteration is done using a
restricted model where the measurement consists only of the 2D image coordi-
nates of the projection of the feature center. The measurement is obtained using
point-feature-like correlation search for the feature template warped according
to the prior estimate. This iterative process is illustrated in Fig. 3.

In our current implementation we use a stereo camera. Conceptually there is
not a great difference between a monocular and a stereo setting. The additional
intensity measurements obtained from the second camera eye contribute addi-
tional pixel measurements (4) with a different warp function W′ which takes
into account the baseline offset of the second eye from the camera center.

5 Experimental Results

We compared the performance of the proposed measurement model to that of
a point-based model on a artificial stereo image sequence. The sequence was
generated using the raytracer POV-Ray. The scene consists of a single large
planar object. The camera parameters were chosen to resemble a Point Grey
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Fig. 4. Comparison of absolute errors in estimated camera orientations for the artificial
image sequence. The position error in x direction is shown on the left. The total angular
error is shown on the right. The dashed lines indicate the 3σ confidence bounds.

Bumblebee R© stereo camera.2 The camera is initially 1 m away from the planar
object. It travels a path where the object is viewed from varying distance (0.4
to 1.7 m) and varying angles (0◦ to 70◦).

To fully constrain the camera orientation estimate only one (sufficiently large)
planar feature is needed. With the point-based model three features are needed.
We use state-of-the-art point features with an inverse-depth representation and
predictive template warping assuming camera-facing normal. All features where
initialised by hand on salient image areas.

In Fig. 4 we compare the errors of the reconstructed camera trajectories with
respect to ground truth. The trajectory obtained using the planar feature is more
accurate and a lot smoother than the trajectory obtained using point features.
Several factors contribute to this result. By using intensities at a large number
of pixels3 as measurements much more information from the images is used than
by artificially reducing the measurement to a single 2D coordinate for each of
the point features. Also, point feature measurements are made at integer pixel
coordinates, although the approach could be extended to compute a sub-pixel
interpolation of the correlation search maximum. Iterating the update process
as described in Sec. 4 provides sub-pixel accurate registration of the feature
template while at the same time keeping the same stability with respect to prior
uncertainty as point features.

We have also tested the planar feature model with real image sequences, that
were recorded with a Point Grey Bumblebee R© stereo camera. Examples from
one sequence are shown in Fig. 5. Again, only a single planar feature is used.
In this case, the feature template is 41× 41 pixels. The feature was selected by
hand on a salient image area. The feature normal estimate is initialised with high
uncertainty as pointing towards the camera. Convergence to the (visually judged)

2 This type of camera was used for the real-world experiments.
3 The feature used corresponds to a 71 × 71 pixel patch in the initial image, which

means that ca. 10, 000 intensity measurements are contributed by one stereo image.



Fig. 5. Results for some pictures of a real image sequence using a single planar feature.
The projected outline of the feature is shown in red. A coordinate frame attached to
the reconstructed feature plane such is shown in black.

correct normal occurs after one frame. No ground truth was available for this
sequence. To give an impression of the accuracy of the reconstruction the images
in Fig. 5 are augmented with a coordinate frame attached to the reconstructed
feature plane such that its Z axis coincides with the plane normal.

6 Conclusion

We presented a representation of plane segments as features in a probabilistic
map and a method to directly measure such features in camera images. We
have shown in experiments that the motion of a camera can be tracked more
accurately than with traditional point features, even when using only a single
planar feature. In order to build a fully functional SLAM system one important
issue has yet to be addressed, namely the detection of planar scene structures
which can be used as features. This is the focus of immediate future work.
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