
Efficient Inferencing for OWL EL

Markus Krötzsch

Institute AIFB, Karlsruhe Institute of Technology, DE
mak@aifb.uni-karlsruhe.de

Abstract. We develop inferencing methods forSROEL(⊓,×) – a DL that sub-
sumes the main features of the W3C recommendation OWL EL –, and present
a framework for studying materialisation calculi based on datalog. The latter is
used to investigate the resource requirements for inferencing, and we can show
that certainSROEL(⊓,×) feature combinations must lead to increased space up-
per bounds in any materialisation calculus, suggesting that efficient implementa-
tions are easier to obtain for suitably chosen fragments ofSROEL(⊓,×).

1 Introduction

The recent OWL 2 W3C recommendation includes the lightweight ontology language
OWL EL [9] which is semantically based on an extension of theEL++ description logic
(DL). It is widely assumed that inferencing in OWL EL is possible in polynomial time,
but it is not obvious how to extend existing reasoning procedures forEL++ accordingly
[2]. In this paper, we set out to close this gap by developing suitable inferencing cal-
culi for the DLSROEL(⊓,×) which can be considered as an extension of the tractable
DL EL++ with local reflexivity (Self), conjunctions of roles, and concept products. The
latter two features generalise role disjointness, the universal (top) role, and admissible
range restrictions as introduced in OWL EL. Concrete domains (datatypes) hardly in-
teract with the additional features ofSROEL(⊓,×) and are not considered in this paper,
though the according mechanisms used in [2] could be lifted toSROEL(⊓,×).

Our second main contribution is to assess theefficiencyof the proposed calculi.
Inferencing forEL-type DLs often suggests a materialisation-based (or consequence-
driven) implementation, where all deductions are computedsimultaneously in a bottom-
up fashion. The number of inferable facts is an important measure of efficiency in this
case, and we present a formalisation of materialisation calculi to relate it to the space
complexity of datalog reasoning. Since upper space bounds for datalog are exponential
in thearity of inferred predicates, our goal is to find materialisation calculi where these
arities are low. We are able to show that there are limits to such optimisation: some
inferencing tasks intrinsically require predicates of higher arities than others.

We present four inferencing calculi: a materialisation calculus for instance checking
in SROEL(⊓,×) in Section3, and three calculi for classification inSROEL(⊓,×) and
two of its fragments in Section4. Thereafter, in Section5, we show that the arity of
inferred predicates is minimal for each of the presented calculi. We provide extended
sketches for some of the more interesting proofs to the extent that space permits. De-
tailed proofs for all results are found in the accompanying technical report [6].

Table 1.Syntax and semantics ofSROEL(⊓,×) axioms

Axiom Syntax Semantics for an interpretationI = 〈∆I, ·I〉
concept assertion C(a) aI ∈ CI

role assertion R(a,b) 〈aI,bI〉 ∈ RI

concept inclusion (GCI) C ⊑ D CI ⊆ DI

role inclusion R⊑ T RI ⊆ TI

generalised role inclusionR◦ S ⊑ T {〈x, z〉 | 〈x, y〉 ∈ RI, 〈y, z〉 ∈ SI for somey} ⊆ TI

role conjunction S1 ⊓ S2 ⊑ T SI1 ∩ SI2 ⊆ TI

concept product C × D ⊑ T CI × DI ⊆ TI

R⊑ C × D TI ⊆ CI × DI

C,D ∈ C, R,S(i),T ∈ NR, a, b ∈ NI

2 Preliminaries

This section summarises the basic notions from DL and datalog that are used in this
paper. Readers who are not familiar with these topics may findextended introductory
definitions in [6]. The main DL studied herein isSROEL(⊓,×) which subsumes all
semantic features of OWL EL that are not related to datatypes(concrete domains).
SROEL(⊓,×) is based on three disjoint finite sets ofindividual namesNI , concept
namesNC, androle namesNR. The setC of SROEL(⊓,×) concept expressionsthen is
given asCF ⊤ | ⊥ | NC | C ⊓ C | ∃NR.C | ∃NR.Self | {NI }. The set ofSROEL(⊓,×)
axiomsis defined as in Table1. One may distinguish axioms ofABox(assertional ax-
ioms),TBox(terminological axioms: GCIs), andRBox(axioms related to roles).

Knowledge bases are sets of axioms that satisfy some additional properties. Con-
sider a set KB ofSROEL(⊓,×) axioms. We inductively define the set ofnon-simple
rolesof KB to contain all rolesT for which there is an axiomR◦ S ⊑ T ∈ KB, or an
axiomR ⊑ T such thatR is non-simple. A role that is not non-simple is calledsimple.
Moreover, given a role nameR, we defineran(R) to denote the set of concept expres-
sionsD ∈ C for which KB contains axiomsR⊑ S1, . . . ,Sn−1 ⊑ Sn andSn ⊑ C × D for
someS1, . . . ,Sn ∈ NR andn ≥ 0. The set KB is aSROEL(⊓,×) knowledge baseif the
following restrictions are satisfied:

– all rolesS occurring in expressions∃S.Self ∈ KB are simple,
– all rolesS1,S2 occurring in axiomsS1 ⊓ S2 ⊑ T ∈ KB are simple,
– for every axiomR◦ S ⊑ T ∈ KB we haveran(T) ⊆ ran(S), and
– for every axiomS1 ⊓ S2 ⊑ T ∈ KB we haveran(T) ⊆ ran(S1) ∪ ran(S2).

Note that we do not impose the structural restrictions of RBox regularity here [5] which
also apply to OWL DL (and hence to OWL EL) ontologies, since these are not needed
for efficient reasoning inSROEL(⊓,×).

The semantics ofSROEL(⊓,×) is specified by defining DL interpretationsI =
〈∆I, ·I〉 as usual. Here, we merely recall the semantics of axioms in Table 1; see [6]
for a complete definition ofSROEL(⊓,×) semantics and entailment. Note that concept
products on the left-hand side allow us to define the universal (top) roleU with an axiom
⊤ × ⊤ ⊑ U. Since we can also define the empty (bottom) roleN using∃N.⊤ ⊑ ⊥,
conjunctions of (simple) roles are a generalisation of disjointness of (simple) roles:

the axiomR⊓ S ⊑ N declaresS andR to be disjoint. In the absence of other role
conjunctions, our requirements on concept products inSROEL(⊓,×) knowledge bases
agree with the known admissibility requirements for range restrictions inEL++ [3].

Our formalisation of inferencing calculi is based on the simple rule languagedata-
log [1]. A signatureof datalog is a tuple〈C,P〉, whereC is a finite set ofconstants, and
P is a finite set ofpredicates, and each predicatep ∈ P has a fixed arityar(p) ≥ 0. We
assumeP to be a disjoint unionPi ∪Pe of IDB predicatesPi andEDB predicatesPe.1 A
countably infinite set ofvariablesis denoted byV. Elements ofC∪V are calledterms.

A datalog atomover a signature〈C,P〉 is an expressionp(t1, . . . , tn) wherep ∈ P
with ar(p) = n, andti ∈ C ∪ V for i = 1, . . . , n. An IDB (EDB) atom is one that uses an
IDB (EDB) predicate. Adatalog ruleis a formula of the formB1∧ . . .∧Bl → H where
Bi andH are datalog atoms, andH is an IDB atom. The premise of a rule is also called
its body, and the conclusion is called itshead. A datalog program Pis a set of datalog
rules. Afact is a ground, i.e. variable-free, rule with an empty body.

A ground substitutionσ for a signature〈C,P〉 is a functionσ : V → C. Substi-
tutions are extended to datalog atoms by settingσ(p(t1, . . . , tn)) ≔ p(σ(t1), . . . , σ(tn)),
andσ(p(t1, . . . , tn)) is called aground instanceof p(t1, . . . , tn) in this case.

A proof treefor a datalog programP is a structure〈N,E, λ〉 whereN is a finite set
of nodes,E ⊆ N × N is a set of edges of a directed tree, andλ is a labelling function
that assigns a ground datalog atom to each node, where the following holds: for each
noden ∈ N, there is a ruleB1 ∧ . . . ∧ Bl → H ∈ P and a ground substitutionσ such
thatλ(n) = σ(H) and the set of child nodes{m | 〈n,m〉 ∈ E} is of the form{m1, . . . ,ml}

whereλ(mi) = σ(Bi) for eachi = 1, . . . , l.
A ground atomH is aconsequenceof a datalog programP if there is a proof tree

for P that hasH as the labelλ(r) of its root noder.

Definition 1. Given a datalog signature〈C,P〉, a renamingρ is a functionρ : C → C.
To extendρ to ground datalog atoms we setρ(p(t1, . . . , tn)) ≔ p(ρ(t1), . . . , ρ(tn)).

3 Instance Checking forSROEL(⊓,×)

We now introduce a calculus for solving the inference task ofinstance checking – de-
ciding if C(a) is entailed for anyC ∈ NC, a ∈ NI – forSROEL(⊓,×). In Section5 we
show its optimality in the sense that no other materialisation calculus can be better in
terms of certain characteristics. To prepare this study of calculi, it makes sense to seek
a uniform presentation for deduction calculi that have beenproposed forEL-type DLs,
e.g., in [2,4]. This motivates our use of datalog in this section.

Intuitively speaking, a materialisation calculus is a system of deduction rules for
deriving logical consequences which – as opposed to a complete inferencing algorithm
– does not specify a control flow or processing strategy for evaluating these rules. De-
duction rules can be denoted in many forms, e.g. using textual if-then descriptions [2],

1 This terminology originates from the field of deductive databases where one distinguishes
extensionalandintensional data base.

C(a) 7→ {subClass(a,C)} R(a,b) 7→ {subEx(a,R,b,b)} a ∈ NI 7→ {nom(a)}
⊤ ⊑ C 7→ {top(C)} A ⊑ ⊥ 7→ {bot(A)} A ∈ NC 7→ {cls(A)}
{a} ⊑ C 7→ {subClass(a,C)} A ⊑ {c} 7→ {subClass(A, c)} R ∈ NR 7→ {rol(R)}
A ⊑ C 7→ {subClass(A,C)} A⊓ B ⊑ C 7→ {subConj(A, B,C)}

∃R.Self ⊑ C 7→ {subSelf(R,C)} A ⊑ ∃R.Self 7→ {supSelf(A,R)}
∃R.A ⊑ C 7→ {subEx(R,A,C)} A ⊑ ∃R.B 7→ {supEx(A,R, B,auxA⊑∃R.B)}

R⊑ T 7→ {subRole(R,T)} R◦ S ⊑ T 7→ {subRChain(R,S,T)}
R⊑ C × D 7→ {supProd(R,C,D)} A× B ⊑ R 7→ {subProd(A, B,R)}
R⊓ S ⊑ T 7→ {subRConj(R,S,T)}

A,B,C,D ∈ NC, R,S,T ∈ NR, a,b, c ∈ NI

Fig. 1. Input translationPinst

in tabular form [9], or as sequent calculus style derivation rules [4]. Premises and con-
clusions of rules often consist of logical formulae, but mayalso contain auxiliary ex-
pressions that are relevant to the calculus.2 A deduction rule can then be viewed as a
schema for deriving new expressions from a finite set of givenexpressions. In particu-
lar, the applicability of rules is normally not affected by uniform renamings of signature
symbols in premise and conclusion.

Deduction rules in this sense can be denoted as datalog ruleswhere concrete logi-
cal sentences are represented as ground facts that use signature symbols in term posi-
tions. For example, we can representA ⊑ B assubclassOf(A, B), and introduce a rule
subclassOf(x, y)∧ subclassOf(y, z)→ subclassOf(x, z). This unifies the presenta-
tion of diverse calculi, and allows us to exploit techniquesfrom deductive databases. For
connecting datalog to DL, we require an input translation from individual DL axioms
to (sets of) datalog EDB facts. This translations is also defined for signature symbols,
since symbols must generally be “loaded” into datalog to be able to derive conclusions
about them, regardless of whether the symbols occurred in input axioms or not. A for-
malisation of these ideas is given later in Definition2.

Calculi in the above sense generally suggest materialisation-based (or consequence-
driven) reasoning: after translating a knowledge base to datalog facts, all consequences
of these facts under the deduction rules can be computed in a bottom-up fashion, and
all supported entailments can then be checked without further recursive computation.
This contrasts with other reasoning principles such as the tableaux method where just a
single entailment is checked in one run of the algorithm.

It is not hard to formulate the deduction algorithms presented forEL-type logics in
[2] and [4] using datalog rules. The calculus we present here, however, is derived from
a datalog reduction introduced in [8] for a rule language based onEL++. This approach
can be modified to coverSROEL(⊓,×) and to use a fixed set of datalog rules to yield
a materialisation calculus in our sense. For simplicity, the following calculus only con-
sidersSROEL(⊓,×) axioms of the basic forms in Fig.1. SROEL(⊓,×) axioms can be
translated to such normalised axioms in linear time so that all entailments of the input
knowledge base are preserved [6].

2 For instance, the calculus in [2] uses auxiliary statementsA{R B for A,B ∈ NC.

(1) nom(x)→ inst(x, x)
(2) nom(x) ∧ triple(x, v, x)→ self(x, v)
(3) top(z) ∧ inst(x, z′)→ inst(x, z)
(4) bot(z) ∧ inst(u, z) ∧ inst(x, z′) ∧ cls(y)→ inst(x, y)
(5) subClass(y, z) ∧ inst(x, y)→ inst(x, z)
(6) subConj(y1, y2, z) ∧ inst(x, y1) ∧ inst(x, y2)→ inst(x, z)
(7) subEx(v, y, z) ∧ triple(x, v, x′) ∧ inst(x′, y)→ inst(x, z)
(8) subEx(v, y, z) ∧ self(x, v) ∧ inst(x, y)→ inst(x, z)
(9) supEx(y, v, z, x′) ∧ inst(x, y)→ triple(x, v, x′)
(10) supEx(y, v, z, x′) ∧ inst(x, y)→ inst(x′, z)
(11) subSelf(v, z) ∧ self(x, v)→ inst(x, z)
(12) supSelf(y, v) ∧ inst(x, y)→ self(x, v)
(13) subRole(v,w) ∧ triple(x, v, x′)→ triple(x,w, x′)
(14) subRole(v,w) ∧ self(x, v)→ self(x,w)
(15) subRChain(u, v,w) ∧ triple(x, u, x′) ∧ triple(x′, v, x′′)→ triple(x,w, x′′)
(16) subRChain(u, v,w) ∧ self(x,u) ∧ triple(x, v, x′)→ triple(x,w, x′)
(17) subRChain(u, v,w) ∧ triple(x,u, x′) ∧ self(x′, v)→ triple(x,w, x′)
(18) subRChain(u, v,w) ∧ self(x,u) ∧ self(x, v)→ triple(x,w, x)
(19) subRConj(v1, v2,w) ∧ triple(x, v1, x′) ∧ triple(x, v2, x′)→ triple(x,w, x′)
(20) subRConj(v1, v2,w) ∧ self(x, v1) ∧ self(x, v2)→ self(x,w)
(21) subProd(y1, y2,w) ∧ inst(x, y1) ∧ inst(x′, y2)→ triple(x,w, x′)
(22) subProd(y1, y2,w) ∧ inst(x, y1) ∧ inst(x, y2)→ self(x,w)
(23) supProd(v, z1, z2) ∧ triple(x, v, x′)→ inst(x, z1)
(24) supProd(v, z1, z2) ∧ self(x, v)→ inst(x, z1)
(25) supProd(v, z1, z2) ∧ triple(x, v, x′)→ inst(x′, z2)
(26) supProd(v, z1, z2) ∧ self(x, v)→ inst(x, z2)
(27) inst(x, y) ∧ nom(y) ∧ inst(x, z)→ inst(y, z)
(28) inst(x, y) ∧ nom(y) ∧ inst(y, z)→ inst(x, z)
(29) inst(x, y) ∧ nom(y) ∧ triple(z,u, x)→ triple(z, u, y)

Fig. 2.Deduction rulesPinst

Theorem 1. Consider the materialisation calculus Kinst with input translation Iinst as in
Fig. 1, and derivation rules Pinst as in Fig.2. For a knowledge baseKB such that Iinst(α)
is defined for allα ∈ KB, set P(KB) ≔ Pinst ∪

⋃
α∈KB I inst(α) ∪

⋃
s∈NI∪NC∪NR

I inst(s).
For all C ∈ NC, and a∈ NI , KB entails C(a) if and only if P(KB) entailsinst(a,C),

whenever P(KB) is defined. Thus Kinst provides a materialisation calculus for instance
checking forSROEL(⊓,×) knowledge bases within which all axioms are normalised.

The IDB predicatesinst, triple, andself in Pinst correspond to ABox axioms
for atomic concepts, roles, and concepts∃R.Self, respectively. Rule (1) serves as an
initialisation rule that accounts for the firstinst facts to be derived. Rule (2) speci-
fies the (only) case where reflexivetriple facts lead toself facts. The rules (3) to
(26) capture expected derivations for each of the axiom types asencoded by the EDB
predicates. Rule (4) checks for global inconsistencies, and would typically not be ma-
terialised in implementations since its effect can directly be taken into account during
entailment checking. Rules (9) and (10) make use of auxiliary constantsauxA⊑∃R.B for
handling existentials. Roughly speaking, each such constant represents the class of all

role successors generated by the axiom from which it originates; see [6] for details. The
remaining rules (27) to (29) encode equality reasoning that is relevant in the presence
of nominals where statementsinst(a, b) with a, b ∈ NI encode equality ofa andb.

Axiom normalisation and the computation ofI inst can be accomplished in linear
time, and the time for reasoning in datalog is polynomial w.r.t. the size of the collec-
tion of ground facts. Together with the known P-hardness ofEL++ [2], we obtain the
following result, of which no formal proof seems to have beenpublished so far:

Corollary 1. Instance checking inSROEL(⊓,×) and in OWL EL without datatype
properties isP complete w.r.t. the size of the knowledge base.

This result can be extended to OWL EL with datatype properties along the lines
of datatype reasoning inEL++ [2], but this is not implied by the above theorem. The
proof of Theorem1 is found in [6]. Completeness is obtained by transforming models of
datalog programs to corresponding models of DL knowledge bases, part of which is to
show that equality reasoning really suffices to establish a congruence between elements
of the domain. Soundness is shown by interpreting the meaning of datalog atoms in
terms of DL, and showing inductively that each rule application preserves soundness
of this interpretation. This is most interesting for rules (19) and (25) where the result
hinges upon the restrictions on role conjunction and concept products inSROEL(⊓,×).

4 Classification ofSROEL(⊓,×) Knowledge Bases

The materialisation calculusKinst of Theorem1 solves the instance checking prob-
lem for SROEL(⊓,×). A calculus for checking satisfiability is easily derived since a
SROEL(⊓,×) knowledge base is inconsistent if and only ifKinst infers a factinst(x, z)
wherebot(z) holds. In this section, we ask how to obtain calculi forclassification– the
computation of all subsumptions of atomic classes implied by a knowledge base.

Class subsumption, too, can be reduced to instance retrieval: to checkA ⊑ B, one
introduces a new individualc and adds an assertionA(c); then the subsumption holds if
the modified knowledge base entailsB(c). This reduction requires the knowledge base
to be modified, leading to new entailments, possibly even to global inconsistency. Thus
Kinst cannot directly be used for classification, since it is not feasible to introduce test
individualsc for all (atomic) classes at load time so as to materialise allsubsumptions
in parallel. Rather, one would have to use a separate run ofKinst for each subclassA to
compute all entailments of the formA ⊑ B.

This approach allows us to derive a sound and complete materialisation calculus for
materialisation inSROEL(⊓,×) by “internalising” the runs ofKinst by extending all
IDB predicates with an additional parameter to encode the test assumption under which
this fact can be inferred. Our assumptions have the formA(c), but the name ofc is not
essential. So we re-use the datalog constantA as the test instance of classA, such that
the additional parameter of IDB atoms can simply be a conceptnameA. The proof of
the following theorem is immediate from this discussion.

Theorem 2. Consider the materialisation calculus Ksc with input translation Isc de-
fined like Iinst in Fig. 1 and datalog program Psc containing the following rules:

– for each rule r ∈ Pinst (Fig. 2), a rule r′ obtained from r by adding a new body
atomcls(q), and replacing each IDB atominst(x, y) (triple(x, y, z), self(x, y))
by an atominst_sc(x, y, q) (triple_sc(x, y, z, q), self_sc(x, y, q)), where q is a
variable not occurring in r,

– the additional rulecls(q)→ inst_sc(q, q, q).

For a knowledge baseKB such that Isc(α) is defined for allα ∈ KB, set P(KB) ≔ Psc∪⋃
α∈KB Isc(α)∪

⋃
s∈NI∪NC∪NR

Isc(s). Then for all A, B ∈ NC, KB entails A⊑ B if and only
if P(KB) entailsinst_sc(A, B,A), whenever P(KB) is defined. Thus Ksc provides a
materialisation calculus for subsumption checking forSROEL(⊓,×) knowledge bases
within which all axioms are normalised.

It must be noted thatKsc is not very efficient since deductions that are globally true
are inferred under each local assumptionq independently. This means that the number
of globally derived facts can multiply by the number of classnames in the signature,
e.g. by more than 300,000 for the popular SNOMED CT ontology.Our formalisation
of materialisation calculi provides a direct measure of this increase: the maximal arity
of IDB predicates inKsc is four while it had been three inKinst, leading to potentially
higher space requirements for materialised derivations. Implementations may of course
achieve lower space bounds by using suitable optimisations; yet standard implemen-
tation techniques for datalog, such as semi-naive materialisation, are sensitive to the
number of parameters in IDB predicates. In developing the database-driven reasoner
Orel [7], we also experienced majorruntime penalties associated with higher arities
due to the larger numbers of inferences that must be considered in each derivation step.

The arity of IDB predicates thus is an important measure for the efficiency of a
materialisation calculus, and we will denote this parameter as thearity of a calculus
and speak of binary/ternary/n-ary materialisation calculi. The search for more efficient
materialisation calculi can now be formalised as the task offinding a ternary or binary
calculus that is sound and complete forSROEL(⊓,×) classification. Unfortunately, as
shown in Section5, such a calculus cannot exist. To illustrate that this is notobvious,
we now present a classification calculus of lower arity for a fragment ofSROEL(⊓,×).

We now develop a ternary materialisation calculus that supports role chains but
no⊤, ⊥, nominal classes, and concept products on the left-hand side of axioms. The
input translation can remain as in Fig.1 but without the cases that involve the excluded
features. The EDB predicatestop, bot, andsubProd are no longer used.

A set of rules is developed by restricting the rules ofKsc of Theorem2. We use
the numbers as in Fig.2 for referring to the rules obtained fromKinst. Rules (3), (4),
(21), and (22) are no longer needed due to the restriction of EDB predicates. Without
nominal classes, we find that all derivationsinst_sc(x, y, q) are such thaty is a DL
class name, ory is a DL individual name andx = y. This is not hard to verify inductively
by considering each rule, and the symbols used in relevant EDB facts. This shows that
rules (27), (28), and (29) are obsolete as well. As shown in [6], the essential feature of
the remaining rule set is that the additional parameterq that has been introduced forKsc

above is no longer required for obtaining a sound and complete materialisation calculus.

Theorem 3. Consider the materialisation calculus Kscc with Iscc defined like Iinst in
Fig. 1 but undefined for all axioms that use nominal classes,⊤, ⊥, or concept products
on the left-hand side, and the program Psccconsisting of the rules(1), (2), (5)–(20), and
(23)–(26) of Fig. 2 together with a new rulecls(z)→ inst(z, z).

For a knowledge baseKB such that Iscc(α) is defined for allα ∈ KB, set P(KB) ≔
Pscc∪

⋃
α∈KB Iscc(α) ∪

⋃
s∈NI∪NC∪NR

Iscc(s). Then for all A, B ∈ NC, KB entails A⊑ B if
and only if P(KB) entailsinst(A, B), whenever P(KB) is defined. Thus Kscc provides a
materialisation calculus for subsumption checking forSROEL(⊓,×) knowledge bases
that contain only⊓ (for concepts and roles),∃, Self, ◦, and concept products on the
right-hand side.

In terms of OWL 2, the DL of the previous theorem covers all OWLEL ontologies
without datatype properties and the constructsowl:Thing,owl:topObjectProperty,
owl:Nothing, owl:bottomObjectProperty,objectHasValue andobjectOneOf.

It is not hard to further simplifyKscc for the case that no role chains occur in the
knowledge base, leading to a binary classification calculusfor normalisedSROEL(⊓,×)
knowledge bases that contain only⊓ (for concepts and roles),∃, Self, and concept prod-
ucts on the right-hand side. For reasons of space, the calculus has been removed from
the final version of this paper; it can still be found in [6]. A similar approach was used
to optimise a classification calculus forELH presented in [4].

5 Minimal Arities of Materialisation Calculi

The previously discussed materialisation calculi forSROEL(⊓,×) featured different
arities: while some reasoning tasks could be solved by binary and ternary calculi, our
classification calculus forSROEL(⊓,×) is 4-ary. We have argued above that lower
arities are important for efficient processing, so it is desirable to develop materialisa-
tion calculi of minimal arity. In this section, we establishlower bounds on the arity of
materialisation calculi for various reasoning problems. This requires a concrete under-
standing of what a materialisation calculus is. Generalising the properties of the calculi
discussed above, we obtain the following formalisation of this notion.

Definition 2. A materialisation calculusK is a tuple K= 〈I ,P,O〉 where I and O are
partial functions, and P is a set of datalog rules, such that

1. given an axiom or signature symbolα, I(α) is either undefined or a set of datalog
facts over EDB predicates,

2. given an axiomα, O(α) is either undefined or a datalog fact over an IDB predicate,
3. the set of EDB and IDB predicates used by I, P, and O is fixed and finite,
4. P contains no constant symbols,
5. all constant symbols used in I(α) or O(α) for some axiom (or signature symbol)
α are either signature symbols that appear in (or are equal to)α, or constants of
the form auxαi with i ≥ 0, where all constant names auxαi are mutually distinct and
unequal to any DL signature symbol,

6. I and O do not depend on concrete signature symbols, i.e. for a renamingρ of sig-
nature symbols that maps individual/concept/role names to individual/concept/role
names, we find I(ρ(α)) = ρ(I (α)) and O(ρ(α)) = ρ(O(α)) if ρ(auxαi) = auxρ(α)i .

We extend I to knowledge basesKB by setting I(KB) ≔
⋃
β∈KB I (β) if I (β) is defined

for all β ∈ KB and undefined otherwise. We extend I to sets of signature symbols S by
setting I(S) ≔

⋃
s∈S,I (s) definedI (s). K induces anentailment relation⊢K between knowl-

edge basesKB and axiomsα over a signature〈NI ,NC,NR〉, defined by settingKB ⊢K α
whenever I(KB) and O(α) are defined and I(KB) ∪ I (NI ∪ NC ∪ NR) ∪ P |= O(α).

We say that K issound (complete)if KB ⊢K α implies (is implied by)KB |= α for
all knowledge basesKB and axiomsα for which I(KB) and O(α) are defined.

Note that this definition explicitly allows the datalog transformationI to introduce
arbitrarily many auxiliary constantsauxαi . This can be utilised, e.g., to perform a nor-
malisation that introduces auxiliary concept names as partof the input translation, or
to introduce new constants for handling existentials as in the above calculi. Yet, the in-
put translation is limited in its expressivity, since it depends only on individual axioms
and signature symbols. In particular, this precludes complex datalog translations as in
[10,11]. Note that we do not make any assumptions on the computability or complexity
of I andO, but both functions are typically very simple.

Now our general proof strategy is as follows. For a contradiction, we suppose that
there is a materialisation calculus of lower arity that solves a given reasoning problem.
We then consider a particular instance of that problem, given by a knowledge base
KB from which a relevant consequenceα must follow. Since the calculus is assumed
to be complete, we obtain an according datalog derivation with a corresponding proof
tree. This proof tree is then modified by renaming constants,leading to a variant of the
proof tree that is still valid for the given materialisationcalculus, but that is based on
different (renamed) assumptions. The modified assumptions correspond to a modified
knowledge base KB′, and by our construction we find that the materialisation calculus
still computes the entailment ofα on the input KB′. We then show thatα is not entailed
by KB′, so that the calculus is proven to be unsound. Since KB′ is based on the modified
proof tree, some graph theoretic arguments are required to establish this last step.

A central notion of this proof strategy is the following modification of proof trees.

Definition 3. Consider a materialisation calculus K= 〈I ,P,O〉 and a knowledge base
KB such that I(KB) is defined, and a proof tree T= 〈N,E, λ〉 for I (KB) ∪ I (NI ∪NC ∪

NR)∪ P. We say that a DL signature symbolσ occursin a ground atom F if F contains
σ as a constant, or if F contains some auxiliary constant auxα

i such thatσ occurs inα.
Theinterfaceof a node n∈ N is the set of signature symbols that occur inλ(n).

The (labels of) T can bediversifiedby the following recursive construction:

– replace all signature symbols s that do not occur in the interface of the root node
by a fresh symbol s′ that has not yet been used in T or in this construction,

– recursively diversify the subtrees below each of the directchild nodes of the root.

We tacitly assume that the datalog signature contains all required new constant names.
Note that the renaming may affect auxiliary constants by renaming symbols in the ax-
ioms that are part of their name. The diversification is thus obtained by replacing some
signature symbols with fresh symbols. This replacement maynot be uniform throughout
the tree, and we use sn to denote the symbol by which s is replaced in node n.

n1: inst(A,C)

n2: subClass(B ,C) n3: inst(A,B)

n11: cls(A)

n8: inst(A,A)

n7: supEx(A,R ,C ,aux)

n4: subEx(R ,C ,B) n5: triple(A,R ,aux) n6: inst(aux ,C)

n10: inst(A,A)

n1 n1

n3

n3n3

n3 n3

A⊑∃R .C
n3 n3

n1 A⊑∃R .C
n3 n3

A⊑∃R .C
n3 n3

n9: supEx(A,R ,C ,aux)n3n3 A⊑∃R .C
n3 n3

n12: cls(A)

n3

Fig. 3. Diversification of aKscc proof for {A ⊑ ∃R.C,∃R.C ⊑ B,B ⊑ C} |= A ⊑ C

Intuitively speaking, the above renaming removes any re-use of constant names
throughout the proof tree that is not strictly necessary forapplying the rules ofP. What
is “strictly necessary” is captured by theinterfaceof each node: constants that are not
in the interface of a rule application can be renamed uniformly in all descendants of the
current node without affecting the correctness of the proof tree. This creates directly
connects the arity of a calculus to the amount of renaming during diversification.

Figure3 shows an example diversification based on the calculusKscc of Theorem3,
where we use the notation from Definition3 for denoting renamed symbols. Note how
C is renamed toCn3 in some but not in all labels. Also note that no further renamings
occur below the nodesn5 andn6 since all relevant symbols occur in their interface
due to the auxiliary constant. As expected, the diversification is again a proof tree for a
knowledge base that contains suitably renamed axioms:

Definition 4. Consider a materialisation calculus K, knowledge baseKB, and proof
tree T as in Definition3. Letλ′ denote a diversified labelling for T .

Let m∈ N be a leaf node withλ(m) ∈ I (α) for someα ∈ KB. By Definition2, one
can rename symbols inα to obtain an axiomα′ such thatλ′(m) ∈ I (α′). Concretely,
α′ is obtained fromα be replacing all symbols s in the interface of m by sm, and by
replacing all other symbols t by some fresh symbol t′ not used anywhere yet. We select
one such axiomα′m for each such node m.

Thediversification KB′ of KB is the knowledge baseKB′ ≔ {α′n | n ∈ N, n a leaf}.
The tree structure of T can be used to representKB′ as a set of nested setsΓn for
n ∈ N, recursively defined by settingΓn ≔ {α

′
m | 〈n,m〉 ∈ E,m a leaf} ∪ {Γm | 〈n,m〉 ∈

E,m not a leaf}. We say that an axiom or set isbelowa setΓn if it is either an element
of Γn, or if it is (recursively) below some element ofΓn.

For Fig.3, the diversified knowledge base is{A ⊑ ∃Rn3.Cn3,∃Rn3.Cn3 ⊑ Bn1, Bn1 ⊑

C} and we haveΓn1 = {Bn1 ⊑ C, {∃Rn3.Cn3 ⊑ Bn1, {A ⊑ ∃Rn3.Cn3}}}. Since the underly-
ing calculus is correct, the conclusion still follows from the diversified knowledge base,
and the diversified proof tree is still correct. Below we use diversification to construct
proof trees with invalid conclusions for calculi with insufficient arities.

To this end, note that ifl is the maximal number of premises in rules ofK, then
each setΓn has at mostl elements (axiomsα′m for leaf children, setsΓm for non-leaf
children). Moreover, ifΓm ∈ Γn, then the DL signature symbols that occur in axioms
belowΓm either belong to the interface ofn, or occur only in axioms of KB′ that are
belowΓm. The interface includes all DL symbols that occur in the ground IDB atom
that is derived at a certain node of the proof tree, so the use of auxiliary constants can

d0 d1

s0

r0 r1

d2

r2

dk

rk

dk+1

rk+1

s1 sk

B

Fig. 4. Dependency graph for the proof of Theorem4

require the inclusion ofall symbols of a given input axiom into the interface. Yet, the
arity clearly limits the number of axioms for which this may be the case: for a calculus
of arity a, the interface of any node can comprise no more than the set ofDL symbols
that occur ina axioms of the input knowledge base.

These observations can also be interpreted graphically based on thedependency
graphof KB′ – the graph that has the signature symbols in KB′ as its nodes, and, for
each axiom of KB′ with exactlyn signature symbols, ann-ary hyperedge connecting
thesen symbols. The sets of axiomsΓn can be viewed as subgraphs of a dependency
graph, where the interface of the noden describes the nodes that this subgraph is al-
lowed to share with the remaining graph. These insights allow us to provide a proof
sketch for our first minimality result; see [6] for details on each step of the argument.

Theorem 4. LetL be a DL with GCIs, existential quantification, and role chains. Ev-
ery materialisation calculus that is sound and complete forclassification or instance
retrieval inL has arity three or more.

Proof. To obtain the result for classification, suppose that there is a binary materialisa-
tion calculusK = 〈I ,P,O〉 for classification inL. Let KB contain the following axioms:

Di ⊑ ∃Si .Di+1, Si ◦Ri+1 ⊑ Ri , Dk+1 ⊑ ∃Rk+1.B, ∃R0.B ⊑ B,

for all i ∈ {0, . . . , k}, wherek > 2(l+1) for l the maximal number of body atoms in rules
of P. Then KB entailsD0 ⊑ B. Thus there is a proof treeT for derivingO(D0 ⊑ B) for
the programI (KB) ∪ I (NI ∪NC ∪NR) ∪ P. Let T′ = 〈N,E, λ′〉 be the diversified proof
tree obtained fromT by using renamed symbolssn as in Definition3, and let KB′ be
the according diversified knowledge base. One can now construct a modelI of KB′ in
such a way thatI |= D0 ⊑ B can hold only if KB′ contains axioms of the form:

d0 ⊑ s0.d1, . . . , dk ⊑ sk.dk+1, s0 ◦ r1 ⊑ r0, . . . , sk ◦ rk+1 ⊑ rk, dk+1 ⊑ B, ∃r0.B ⊑ B,

whered0 = D0, di = Do
i for someo ∈ N, si = So

i for someo ∈ N, andr i = Ro
i for some

o ∈ N. We claim that this is impossible. For a contradiction, suppose KB′ contains a
set of axioms KB′′ of this form. The axioms of KB′′ are distributed over sets (Γo)o∈N as
in Definition4. SinceT′ has an out-degree of at mostl (as specified above), our choice
of k implies thatT′ contains a nodeo ∈ N such thatΓo has three axioms of the form
di ⊑ ∃si .di+1 below it, and such that three other axioms of this form are notbelow it.

The axioms belowΓo induce a subgraph of the dependency graph of KB′′ as shown
in Fig. 4. As discussed above, this subgraph may share at most two nodes with the rest
of the graph sinceK has arity two. Now it is not hard to argue that such a subgraph

cannot exist. HenceΓo cannot exist, and KB′′ cannot be contained in KB′. SoI does
not satisfyD0 ⊑ B, and thus the latter is not a consequence of KB′. As T′ is a proof
tree for I (KB′) ∪ I (NI ∪ NC ∪ NR) ∪ P, K derivesD0 ⊑ B. So K cannot be sound,
contradicting our assumption of its existence.

The result for instance retrieval is obtained by extending KB with an axiomD0(a),
and using an analogous argument to show thatB(a) is not entailed by any diversification
of this knowledge base on a materialisation calculus of arity 2. ⊓⊔

Analogous proofs can be given to obtain results for DLs that include nominals:

Theorem 5. LetL be a DL with GCIs, existential quantification, and nominal classes.
Every materialisation calculus that is sound and complete for classification inL has
arity three or more.

Theorem 6. LetL be a DL with GCIs, existential quantification, role chains, and nomi-
nal classes. Every materialisation calculus that is sound and complete for classification
in L has arity four or more.

These results do not extend to instance retrieval, so in a sense classification is harder
to implement efficiently. Indeed, Theorem1 shows that a ternary instance retrieval cal-
culus exists for a DL that includes existentials, nominals,and role chains. For DLs as
in Theorem5, we have not presented calculi of optimal arity. A ternary (binary) cal-
culus for classification (instance retrieval) in this case can be obtained by eliminating
thetriple_sc (triple) predicate fromKsc (Kinst) as done for the binary calculusKsc-

presented in [6]. Theorem6 may be surprising, given that the calculus proposed in [2]
for EL++ would be ternary in our notation. The explanation is that this algorithm is
incomplete for classification; the proof of Theorem6 can be used to find a suitable
counter example [6].

6 Summary and Conclusions

The focus of this work has been the study of inferencing calculi for SROEL(⊓,×) and
its fragments, and especially this paper is – to the best of our knowledge – the first to
present a sound and complete polynomial time calculus for inferencing in a DL that is
so closely related to the OWL EL ontology language. For investigating properties of
such calculi, we presented a simple framework for expressing materialisation calculi
in terms of datalog. This revealed the arity of IDB predicates as an interesting mea-
sure for the worst-case space requirements of materialisation-based algorithms. While
SROEL(⊓,×) fragments without role chains and nominals admit classification calculi
based on binary IDB predicates, the inclusion of either feature increases the required
arity by one. Having both features,SROEL(⊓,×) thus does not admit any sound and
complete classification calculus of arity below four.

We are thus able to differentiate variousSROEL(⊓,×) fragments and inferencing
tasks based on a measure that relates to the efficiency of actual implementations. Indeed,
our findings agree with practical experiences that especially nominals and role chains
are harder to implement efficiently than basicEL features.3 Computational complexity

3 Based on the author’s experience implementing Orel [7], and personal communication with
developers of DB [4] and CEL (http://lat.inf.tu-dresden.de/systems/cel/).

http://lat.inf.tu-dresden.de/systems/cel/

has not been able to provide an explanation for such discrepancies, since all reasoning
problems we consider are P-complete. In addition, our studyalso shows that various
other features are not harder to implement than some of the most basic ones, thus pro-
viding guidance for deciding which features to implement orto use in an application.

Although there are standard implementation strategies fordatalog reasoning, our
study is independent of actual algorithms. A promising nextstep thus is to develop con-
trol strategies for implementing our calculi in a “pay-as-you-go” algorithm that min-
imises the potential negative impact of the occurrence of certain features. Moreover,
we conjecture that our results about datalog arity can be further strengthened to obtain
more direct statements about space complexity of almost arbitrary monotone calculi.

AcknowledgementsThe author thanks Yevgeny Kazakov for his valuable input, and
the anonymous reviewers for helpful comments. This work wassupported by DFG in
projectExpresSTand by EPSRC in projectConDOR(EP/G02085X/1).

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley (1994)
2. Baader, F., Brandt, S., Lutz, C.: Pushing theEL envelope. In: Kaelbling, L., Saffiotti, A.

(eds.) Proc. 19th Int. Joint Conf. on Artificial Intelligence (IJCAI’05). pp. 364–369. Profes-
sional Book Center (2005)

3. Baader, F., Brandt, S., Lutz, C.: Pushing theEL envelope further. In: Clark, K.G., Patel-
Schneider, P.F. (eds.) Proc. OWLED 2008 DC Workshop on OWL: Experiences and Direc-
tions. CEUR Workshop Proceedings, vol. 496. CEUR-WS.org (2008)

4. Delaitre, V., Kazakov, Y.: ClassifyingELH ontologies in SQL databases. In: Patel-
Schneider, P.F., Hoekstra, R. (eds.) Proc. OWLED 2009 Workshop on OWL: Experiences
and Directions. CEUR Workshop Proceedings, vol. 529. CEUR-WS.org (2009)

5. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Doherty, P., My-
lopoulos, J., Welty, C.A. (eds.) Proc. 10th Int. Conf. on Principles of Knowledge Represen-
tation and Reasoning (KR’06). pp. 57–67. AAAI Press (2006)

6. Krötzsch, M.: Efficient inferencing for the description logic underlying OWLEL. Tech.
Rep. 3005, Institute AIFB, Karlsruhe Institute of Technology (2010), available online at
http://www.aifb.kit.edu/web/Techreport3005

7. Krötzsch, M., Mehdi, A., Rudolph, S.: Orel: Database-driven reasoning for OWL 2 profiles.
In: Haarslev, V., Toman, D., Weddell, G. (eds.) Proc. 23rd Int. Workshop on Description
Logics (DL’10) (2010)

8. Krötzsch, M., Rudolph, S., Hitzler, P.: ELP: Tractable rules for OWL 2. In: Sheth et al. [12],
pp. 649–664

9. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C. (eds.): OWL 2
Web Ontology Language: Profiles. W3C Recommendation (27 October 2009), available at
http://www.w3.org/TR/owl2-profiles/

10. Motik, B., Sattler, U.: A comparison of reasoning techniques for querying large description
logic ABoxes. In: Hermann, M., Voronkov, A. (eds.) Proc. 13th Int. Conf. on Logic for
Programming, Artificial Intelligence, and Reasoning (LPAR’01). LNCS, vol. 4246, pp. 227–
241. Springer (2006)

11. Rudolph, S., Krötzsch, M., Hitzler, P.: Description logic reasoning with decision diagrams:
CompilingSHIQ to disjunctive datalog. In: Sheth et al. [12], pp. 435–450

12. Sheth, A., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.):
Proc. 7th Int. Semantic Web Conf. (ISWC’08), LNCS, vol. 5318. Springer (2008)

http://www.aifb.kit.edu/web/Techreport3005
http://www.w3.org/TR/owl2-profiles/

	Efficient Inferencing for OWL EL
	1 Introduction
	2 Preliminaries
	3 Instance Checking for SROEL(n,x)
	4 Classification of SROEL(n,x) Knowledge Bases
	5 Minimal Arities of Materialisation Calculi
	6 Summary and Conclusions

