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Abstract. The SAT solver riss has been developed for analyzing the
resource utilization of state of the art SAT solvers. It introduces new
techniques like the Slab Allocator and Prefetching.

1 The SAT Solver riss

The SAT solver riss is CDCL based. It has been implemented during a stu-
dent project to analyze the memory hierarchy utilization. It uses a cache aware
implementation and data structure improvements described in [9].

The 32bit C++implementation is based on HydraSAT [2], which has been
submitted to the SAT Competition 2009. Since riss is a re-implemented (ex-
cept conflict analysis and preprocessor) of HydraSAT, which is close to the
MiniSAT 1.4 [6] implementation, the basic riss version is also comparable to
MiniSAT. The components are exchangeable at runtime and can by loaded from
libraries. The component system uses C++templates.

2 Data Structures

The basic data structures are taken from the Standard Template Library. Clauses
are implemented according to the clause packing schema in [4] using 5 local
literals. They are allocated using a Slab Allocator [3]. The watched list of the
two-watched-literal schema are implemented using a vector. Removing elements
from them is done lazily.

3 Solver Components

Riss implements a conflict driven decision learning search. Conflict analysis is
done using the first UTP scheme. Afterwards self subsumption is applied to min-
imize the resulting clause (learnt clause) even further. Before the search a pre-
processor,similar to the Satellite preprocessor [5], is applied.

Unit propagation treats binary clauses specially. First the assignment is ap-
plied to binary clauses and all their implications, next longer clauses are consid-
ered.

Propagating longer clauses is improved by prefetching the clause headers.
Additionally, blocking literals [11] are used. Like SApperloT [7], a probing [8]
step is applied, if a literal is propagated on the first level of the search tree. The
obtained variable equivalence informations is not used at the moment, but found
units are propagated.



Decisions are done using phase saving as it has been introduced in [10]. The
phases are stored during backjumping in the search tree for all assignments that
are undone. The phase information is not reset. Random decisions are made with
a probability of 2%.

Scheduling restarts uses the luby schema with 32 as factor. Scheduling clause
removal is done using a geometric series with base 1000 and 4/3 as increase factor.
The the clause removal is activity based. Clauses of size two and clauses with an
activity higher than a certain threshold are kept. The activity of learnt clauses
is inversely proportional to the number of tree levels that occur in this clause [1].
Learnt clauses that are added exactly before a restart are never removed.
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