TECHNISCHE
UNIVERSITAT
DRESDEN

Faculty of Computer Science Institute of Artificial Intelligence Knowledge Representation and Reasoning

riss 2010 Solver Description

Norbert Manthey

KRR Report 10-02

Mail to Bulk mail to Office Internet N
Technische Universitdt Dresden Technische Universitdt Dresden Room 2006 http://www.wv.inf.tu-dresden.de ‘
01062 Dresden Helmholtzstr. 10 Nothnitzer Strafie 46
01069 Dresden 01187 Dresden v;
DRESDEN
concept



riss 2010 Solver Description

Norbert Manthey

International Center for Computational Logic,
TU Dresden, 01062 Dresden, Germany
Norbert@janeway.inf.tu-dresden.de

Abstract. The SAT solver riss has been developed for analyzing the
resource utilization of state of the art SAT solvers. It introduces new
techniques like the Slab Allocator and Prefetching.

1 The SAT Solver riss

The SAT solver riss is CDCL based. It has been implemented during a stu-
dent project to analyze the memory hierarchy utilization. It uses a cache aware
implementation and data structure improvements described in [9].

The 32bit C++implementation is based on HydraSAT [2], which has been
submitted to the SAT Competition 2009. Since riss is a re-implemented (ex-
cept conflict analysis and preprocessor) of HydraSAT, which is close to the
MiniSAT 1.4 [6] implementation, the basic riss version is also comparable to
MiniSAT. The components are exchangeable at runtime and can by loaded from
libraries. The component system uses C++templates.

2 Data Structures

The basic data structures are taken from the Standard Template Library. Clauses
are implemented according to the clause packing schema in [4] using 5 local
literals. They are allocated using a Slab Allocator [3]. The watched list of the
two-watched-literal schema are implemented using a vector. Removing elements
from them is done lazily.

3 Solver Components

Riss implements a conflict driven decision learning search. Conflict analysis is
done using the first UTP scheme. Afterwards self subsumption is applied to min-
imize the resulting clause (learnt clause) even further. Before the search a pre-
processor,similar to the Satellite preprocessor [5], is applied.

Unit propagation treats binary clauses specially. First the assignment is ap-
plied to binary clauses and all their implications, next longer clauses are consid-
ered.

Propagating longer clauses is improved by prefetching the clause headers.
Additionally, blocking literals [11] are used. Like SApperloT [7], a probing [8]
step is applied, if a literal is propagated on the first level of the search tree. The
obtained variable equivalence informations is not used at the moment, but found
units are propagated.



Decisions are done using phase saving as it has been introduced in [10]. The
phases are stored during backjumping in the search tree for all assignments that
are undone. The phase information is not reset. Random decisions are made with
a probability of 2%.

Scheduling restarts uses the luby schema with 32 as factor. Scheduling clause
removal is done using a geometric series with base 1000 and 4/3 as increase factor.
The the clause removal is activity based. Clauses of size two and clauses with an
activity higher than a certain threshold are kept. The activity of learnt clauses
is inversely proportional to the number of tree levels that occur in this clause [1].
Learnt clauses that are added exactly before a restart are never removed.
Acknowledgment 1 want to thank Max Seelemann and Friedrich Gréter, the
programmer of the first HydraSAT version, for implementing the conflict analy-
sis and the conflict minimization and Christoph Baldow, who implemented the
HydraSAT preprocessor.

References

1. G. Audemard and L. Simon. GLUCOSE: a solver that predicts learnt
clauses quality. SAT 2009 Competitive Event Booklet, http://www.cril.univ-
artois.fr/SAT09/solvers/booklet.pdf.

2. C. Baldow, F. Gréter, S. Holldobler, N. Manthey, M. Seelemann, P. Steinke,
C. Wernhard, K. Winkler, and E. Zenker. HydraSAT 2009.3 solver de-
scription. SAT 2009 Competitive Event Booklet, http://www.cril.univ-
artois.fr/SAT09/solvers/booklet.pdf.

3. J. Bonwick. The slab allocator: an object-caching kernel memory allocator. In
Proceedings of the USENIX Summer 1994 Technical Conference, 1994.

4. G. Chu, A. Harwood, and P. J. Stuckey. Cache conscious data structures for
Boolean satisfiability solvers. Journal on Satisfiability, Boolean Modeling and Com-
putation, 6:99-120, 2009.

5. N. Eeen and A. Biere. Effective preprocessing in SAT through variable and clause
elimination. In Theory and Applications of Satisfiability Testing: 8th International
Conference, SAT 2005, 2005.

6. N. Eén and N. Soérensson. An extensible SAT-solver. In Theory and Applications
of Satisfiability Testing: 6th International Conference, SAT 2003, volume 2919 of
LNCS, pages 502-518. Springer, 2004.

7. S. Kottler. SApperloT,Description of two solver versions submitted for the SAT-
competition 2009. SAT 2009 Competitive Event Booklet, http://www.cril.univ-
artois.fr/SAT09/solvers/booklet.pdf.

8. L. Lynce and J. Marques-Silva. Probing-based preprocessing techniques for propo-
sitional satisfiability. In ICTAI’08, 2003.

9. N. Manthey and A. Saptawijaya. Towards improving the resource usage of sat-
solvers. In submitted to the Pragmatics of SAT Workshop 2010, 2010.

10. K. Pipatsrisawat and A. Darwiche. A lightweight component caching scheme for
satisfiability solvers. In J. Marques-Silva and K. A. Sakallah, editors, SAT, volume
4501 of Lecture Notes in Computer Science, pages 294-299. Springer, 2007.

11. N. Sorensson and N. Een. MINISAT 2.1 and MINISAT++ 1.0 SAT Race
2008 Editions. SAT 2009 Competitive Event Booklet, http://www.cril.univ-
artois.fr/SAT09/solvers/booklet.pdf.



