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Abstract. Conjunctive query answering over expressive Horn Descrip-
tion Logic ontologies is a relevant and challenging problem which, in some
cases, can be addressed by application of the chase algorithm. In this pa-
per, we define a novel acyclicity notion which provides a sufficient condi-
tion for termination of the restricted chase over Horn-SRIQ TBoxes.
We show that this notion generalizes most of the existing acyclicity
conditions (both theoretically and empirically). Furthermore, this new
acyclicity notion gives rise to a very efficient reasoning procedure. We
provide evidence for this by providing a materialization based reasoner
for acyclic ontologies which outperforms other state-of-the-art systems.

1 Introduction

Conjunctive query (CQ) answering over expressive Description Logic (DL) on-
tologies is a key reasoning task which remains unsolved for many practical pur-
poses. Indeed, answering CQs over DL ontologies is quite intricate and often
of high computational complexity [4, 8, 16]. Nevertheless, CQ answering over a
major class of DLs, the so-called Horn DLs, can in some cases be addressed via
application of the chase algorithm, a technique where all relevant consequences
of an ontology are precomputed, allowing queries to be directly evaluated over
the materialized set of facts. However, the chase is not guaranteed to terminate
for all ontologies, and checking whether it does is not a straightforward proce-
dure. It is thus an ongoing research endeavor to establish so-called acyclicity
conditions; i.e., sufficient conditions which ensure termination of the chase.

The main contribution of this paper is the definition of restricted chase
acyclicity (RCAn), a novel acyclicity condition for Horn-SRIQ ontologies (the
DL Horn-SRIQ may be informally described as the logic underpinning the de-
terministic fragment of OWL DL [9] minus nominals). If an ontology is proven
to be RCAn, then n-cyclic terms do not occur during the computation of the
chase of such ontology and thus the chase is guaranteed to terminate.

In contrast with existing acyclicity notions [6] which deal with termination
of the unrestricted, i.e. oblivious, chase of arbitrary sets of existential rules, we
restrict our attention to the language Horn-SRIQ and seek to achieve termina-
tion of the restricted chase algorithm [3]; this is a special variant of the standard
chase in which the inclusion of further terms to satisfy existential restrictions is



avoided if such restrictions are already satisfied, and equality is dealt with via
renaming. By considering such a chase algorithm we are able to devise acyclic-
ity conditions which are more general than any other of the notions previously
described.

On the theoretical side, we show that RCAn is more general than model-
faithful acyclicity (MFA) provided n is sufficiently large (linear in the size of
ontology). As shown in [6], this is one of the most general acyclicity conditions
for ontologies described to date, as it encompasses many other existing notions
such as joint acyclicity [12], super-weak acyclicity [14] or the hybrid acyclicity
notions presented in [2]. Furthermore, we show that deciding RCAn membership
is not harder than deciding MFA membership.

On the practical side, we empirically show that (i) RCAn characterizes more
real-world ontologies as acyclic than MFA. Furthermore, we demonstrate that
(ii) the specific type of acyclicity captured by RCAn results in a more efficient
reasoning procedure. This is because acyclicity is still preserved in the case when
employing renaming techniques when reasoning in the presence of equality. Thus,
the use of cumbersome axiomatizations of equality such as singularization [14]
can be avoided. Moreover, we report on an implementation of the restricted
chase algorithm based on the datalog engine RDFOx [15] and show that (iii) it
vastly outperforms state-of-the-art DL reasoners. To verify (i-iii), we complete
an extensive evaluation with very encouraging results.

The rest of the paper is structured as follows: We start with some prelimi-
naries in Section 2. Section 3 formally introduces the notions of oblivious and
restricted chase, followed by an overview of MFA in Section 4. In Section 5
we introduce our new acyclicity notion RCAn. Finally, Section 6 and Section 7
describe the evaluation of our work and list our conclusions, respectively.

An extended technical report for this paper with all the proofs and further in-
formation concerning the evaluation can be found at http://dase.cs.wright.
edu/publications/acyclicity-notion-cqa-over-horn-sriq-ontologies.

2 Preliminaries

Rules We use the standard notions of constants, function symbols and predi-
cates, where ≈ is the equality predicate, > is universal truth, and ⊥ is universal
falsehood. Variables, terms, atoms and substitutions are defined as usual. A fact
is a ground atom; i.e., an atom without occurrences of variables. As customary,
every term t is associated with some depth dep(t) ≥ 0. Furthermore, we often ab-
breviate a vector of terms t1, . . . , tn as t and identify t with the set {t1, . . . , tn}.
In a similar manner, we often identify a conjunction of atoms φ1 ∧ . . . ∧ φn
with the set {φ1, . . . , φn}. With φ(x) we stress that x = x1, . . . , xn are the free
variables occurring in the formula φ.

Let t be some ground term and c some constant. Let tc be the term ob-
tained from t by replacing every occurrence of a constant by c, i.e., f(d, g(e))c =
f(c, g(c)). The notation is analogously extended to facts and sets of facts.



A term t′ is a subterm of another term t if and only if t′ = t, or t = f(s)
and t′ is a subterm of some s ∈ s; if additionally t′ 6= t, then t′ is a proper
subterm of t. A term t is n-cyclic if and only if there exists a sequence of terms
of the form f(s1), . . . , f(sn+1) such that f(sn+1) is a subterm of t and, for
every i = 1, . . . , n, f(si) is a proper subterm of f(si+1). We simply refer to
1-cyclic terms as cyclic.

A rule is a first-order logic (FOL) formula of one of the forms

∀x∀z[β(x, z)→ ∃yη(x,y)] or (1)

∀x[β(x)→ x ≈ y], (2)

where β and η are non-empty conjunctions of atoms which do not contain oc-
currences of constants, function symbols nor of the predicate ≈; x, y and z are
pairwise disjoint; and x, y ∈ x. To simplify the notation, we frequently omit the
universal quantifiers from rules. As customary, we refer to rules of the forms
(1) and (2) as tuple generating dependencies (TGDs) and equality generating
dependencies (EGDs), respectively.

Given a set of rules R, we define R∃ and R∀ as the sets of all the TGDs in
R which do and do not contain existentially quantified variables, respectively.
Moreover, let R≈ be the set of all EGDs in R. A program is a tuple 〈R, I〉 where
R is a set of rules and I is an instance; i.e., a finite set of equality-free facts.

The main reasoning task we are investigating in this paper is CQ answering.
Nevertheless, for the rest of the paper, we restrict our attention to the simpler
task of CQ entailment of boolean conjunctive queries (BCQs). This is without
loss of generality since CQ answering can be reduced to checking entailment of
BCQs. A BCQ, or simply a query, is a formula of the form ∃yη(y) where η is a
conjunction of atoms not containing occurrences of constants, function symbols
nor ≈.

For the remainder of the paper, we assume that > and ⊥ are treated as
ordinary unary predicates and that the semantics of > is captured explicitly in
any program P = 〈R, I〉 by including the rule p(x1, . . . , xn)→ >(x1)∧. . .∧>(xn)
in R for every predicate p with arity n occurring in P.

We interpret programs under standard FOL semantics with true equality. As
usual, a program P is satisfiable if and only if P 6|= ∃y⊥(y). Furthermore, given
some query γ, we write P |= γ to indicate that P entails γ.

We will later employ skolemization to define the consequences of a TGD over
a set of facts. The skolemization sk(ρ) of some TGD ρ = β(x, z)→ ∃yη(x,y) is
the rule β(x, z) → η(x,y)σsk where σsk is a substitution mapping every y ∈ y
into fyρ (x) where fyρ is a fresh function unique for every variable y and TGD ρ.

Description Logics We next define the syntax and semantics of the ontology
language Horn-SRIQ [13]. We assume basic familiarity with DL, and refer the
reader to the literature for further details [1]. Without loss of generality, we
restrict our attention to ontologies in a normal form close to the one from [13].

A DL signature is a tuple 〈NC,NR,NI〉 where NC, NR and NI are infinite
countable and mutually disjoint sets of concept names, role names and indi-



A1 u . . . uAn v B 7→ A1(x) ∧ . . . ∧An(x)→ B(x)

A v ∀R.B 7→ A(x) ∧R(x, y)→ B(y)

A v ≤ 1R.B 7→ A(x) ∧R(x, y) ∧B(y) ∧R(x, z) ∧B(z)→ y ≈ z
A v ∃R.B 7→ A(x)→ ∃y[R(x, y) ∧B(y)]

S v R 7→ S(x, y)→ R(x, y)

S− v R 7→ S(y, x)→ R(x, y)

S ◦ V v R 7→ S(x, y) ∧ V (y, z)→ R(x, z)

Fig. 1. Mapping axioms α to rules Π(α), where A(i), B ∈ NC, R,S, V ∈ NR.

viduals, respectively, such that {⊥,>} ⊆ NC. A role is an element of N−R =
NR ∪ {R− | R ∈ NR}. A TBox axiom is a formula of one of the forms given
on the left hand side of the mappings in Figure 1. TBox axioms of the form
A v ∃R.B are also referred as existential axioms. An ABox axiom is a formula
of the form A(a) or R(a, b) where A ∈ NC, R ∈ NR and a, b ∈ NI. An axiom is
either a TBox or an ABox axiom. As usual, we simply refer to a set of TBox
(resp. ABox) axioms as a TBox (resp. an ABox ).

A Horn-SRIQ ontology O (or simply an ontology) is some tuple 〈T ,A〉,
where T and A are a TBox and an ABox, respectively, which satisfies the usual
conditions [10].

Due to the close correspondence between ontologies and programs, we define
the semantics of the former by means of a mapping into the latter. Given some
TBox T , let RT = Π(T ). Given some ontology O = 〈T ,A〉, let P(O) = (RT ,A)
where Π is the function from Figure 1. We say that O is satisfiable if and only
if the program P(O) is satisfiable. Furthermore, O entails a query γ, written
O |= γ, if and only if P(O) is unsatisfiable or P(O) entails γ.

3 The Chase Algorithm

In this section we present two variants of the chase algorithm, which are some-
what similar to the oblivious and restricted chase from [3], and elaborate about
how such procedures may be used to solve CQ entailment over ontologies.

Definition 1. A fact φ is an oblivious consequence of a TGD ρ = β(x, z) →
∃yη(x,y) on a set of facts F if and only if there is some substitution σ with
β(x, z)σ ⊆ F and φ ∈ sk(η(x,y))σ where sk(η(x,y)) is the head of the (skolem-
ized) TGD sk(ρ). A fact φ is a restricted consequence of ρ on F if and only if
there is a substitution σ with (1) β(x, z)σ ⊆ F and φ ∈ sk(η(x,y))σ, and (2)
there is no substitution τ ⊇ σ with η(x,y)τ ⊆ F .

The result of obliviously applying ρ to F , written ρO(F), is the set of all
oblivious consequences of ρ on F . The result of obliviously applying a set of



TGDs R to F , written RO(F), is the set
⋃
ρ∈R ρO(F) ∪ F . The result of re-

strictively applying ρ to F (resp., R to F), written ρR(T ) (resp., RR(T )), is
analogously defined.

Definition 2. Let  be some total strict order over the set of all terms such
that t u only if dep(t) ≤ dep(u). Furthermore, we say that t is greater than u
with respect to  to indicate t u.

Given a set of EGDs R and a set of facts F , let 7→RF be the minimal con-
gruence relation over terms such that t 7→RF u if and only if there exists some
β(x) → x ≈ y ∈ R and some substitution σ with β(x)σ ⊆ F , σ(x) = t and
σ(y) = u. Let R(F) be the set that is obtained from F by replacing all occur-
rences of every term t by u where u is the greatest term with respect to  such
that t 7→RF u.

Note that we define consequences with respect to sets of rules instead of
simply (single) rules as it is customary [3]. This allows us to define the chase as
a deterministic procedure (modulo ). Also, unlike in [3], where a lexicographic
order is used to direct the replacement of terms, we employ a type of order
which ensures that terms are always replaced by terms of equal or lesser depth.
This effectively precludes some “deeper” terms from being introduced during
the computation of the chase.

Definition 3. Let P = 〈R, I〉 be some program. The oblivious chase sequence
of P is the sequence F0,F1, . . . such that F1 = I and, for all i ≥ 1, Fi is the set
of facts defined as follows.

– If R≈(Fi−1) 6= Fi−1, then Fi = R≈(Fi−1).
– If Fi−1 = R≈(Fi−1) and Fi−1 6= R∀O(Fi−1), then Fi = R∀O(Fi−1).
– Otherwise, Fi = R∃O(Fi−1).

The restricted chase sequence of P is defined analogously.

For the sake of brevity, we frequently denote the oblivious (resp., restricted)
chase sequence of a program P with P1

O,P2
O, . . . (resp., P1

R,P2
R, . . .)

Definition 4. Let P be some program and let R be some set of rules. Then, the
oblivious chase of P is the set OC(P) =

⋃
i∈N PiO. The restricted chase of P,

written RC(P), is defined analogously.
The oblivious (resp., restricted) chase of P terminates if and only if there

is some i such that, for all j ≥ i, PiO = PjO. Furthermore, the oblivious (resp.,
restricted) chase of a set of rules R terminates if the oblivious (resp., restricted)
chase of every program of the form 〈R, I〉 terminates.

Our definition of the chase sequence ensures that rules which do not contain
existentially quantified variables are always applied with a higher priority than
rules that do. Note that, by postponing the application of rules with existential
variables, we may prevent them from introducing further consequences.

The (restricted or oblivious) chase of a program can be employed to solve
CQ entailment [3]. I.e., a program P entails a query γ, written P |= γ, if and



T = {Film v ∃isProdBy.Producer,Producer v ∃prod.Film,

isProdBy− v prod, prod− v isProdBy}
O = 〈T , {Film(AI)}〉
RT = {ρ = Film(x)→ ∃y[isProdBy(x, y) ∧ Producer(y)],

υ = Producer(x)→ ∃y[prod(x, y) ∧ Film(y)],

isProdBy(y, x)→ prod(x, y), prod(y, x)→ isProdBy(x, y)}
P(O) = 〈RT , {Film(AI)}〉

P(O)1R = {Film(AI), isProdBy(AI, fyρ (AI)),Producer(fyρ (AI))}

P(O)2R = {prod(fyρ (AI),AI)} ∪ P(O)1O

RC(P(O)) = P(O)2O

OC(P(O)) = RC(P(O)) ∪ {prod(fyρ (AI), fyυ (fyρ (AI))),Film(fyυ (fyρ (AI))), . . .}

Fig. 2. Ontology O = 〈T ,A〉, program P(O) and the chase of P(O).

only if either OC(P) |= ∃y⊥(y) or OC(P) |= γ (resp., RC(P) |= ∃y⊥(y) or
RC(P) |= γ). Thus, we may also use the chase to solve CQ entailment over
ontologies: An ontology O entails a query γ if and only if OC(P(O)) |= ∃y⊥(y)
or OC(P(O)) |= γ (resp., RC(P(O)) |= ∃y⊥(y) or RC(P(O)) |= γ).

For readability purposes, we say that the oblivious (resp. restricted) chase
of some ontology O terminates if and only if the oblivious (resp. restricted)
chase of P(O) terminates. The oblivious (resp. restricted) chase of some TBox T
terminates if and only if if the oblivious (resp. restricted) chase ofRT terminates.

As expected, the restricted chase has a better behavior than the oblivious
chase; i.e., in some cases, the former might terminate when the latter does not:

Example 5. Let O = 〈T ,A〉 be as in Figure 2. The figure depicts also the com-
putation of the oblivious chase and that of the restricted chase of P(O). In this
case, RC(P(O)) terminates whereas OC(P(O)) does not.

4 Model Faithful Acyclicity

In this section we briefly describe Model Faithful Acyclicity (MFA) [6], one of
the most general acyclicity conditions for sets of rules. MFA guarantees the
termination of the oblivious chase of a program by imposing that no cyclic term
occurs in the chase. Note that, a condition such as MFA can be applied to check
whether a TBox T is acyclic; i.e., T is MFA if and only if RT is MFA.

When one is interested in checking the termination of the oblivious chase
with respect to every possible instance, it is enough to check termination with
respect to a special instance, the critical instance [14]. The critical instance is
the minimal set which contains all possible atoms that can be formed using
the relational symbols which occur in TGDs and the special constant ?. Such a
strategy is used by MFA to guarantee termination of a set of rules.



While the actual definition of MFA does not preclude the existence of EGDs,
equality is assumed to be axiomatized, and thus it is treated as a regular predi-
cate (EGDs are de facto TGDs). To reflect such treatment we will use the special
predicate Eq to denote equality. However, as the following example shows, the
presence of equality in a set of TGDs frequently makes the MFA membership
test fail.

Example 6. Let Σ be the following set of rules and let Σ′ be the set of rules that
result from axiomatizing the equality predicate as usual (see Section 2.1 of [6]).
Furthermore, let I?(Σ′) be the critical instance of Σ′.

Σ = {A(x) ∧B(x)→ ∃y[R(x, y) ∧B(y)], R(z, x1) ∧R(z, x2)→ Eq(x1, x2)}
Eq = {>(x)→ Eq(x, x),Eq(x, y)→ Eq(y, x),Eq(x, z) ∧ Eq(z, y)→ Eq(x, y)}
Σ′ = {A(x) ∧ Eq(x, y)→ A(y), R(x, y) ∧ Eq(x, z)→ R(z, y),

R(x, y) ∧ Eq(y, z)→ R(x, z)} ∪Σ ∪ Eq

I?(Σ′) = {A(?), R(?, ?),Eq(?, ?)}

The oblivious chase of (Σ′, I?(Σ′)) does not terminate.

(Σ′, I?(Σ′))1O = {R(?, f(?)), B(f(?)),Eq(?, f(?))} ∪ I?(Σ′)
(Σ′, I?(Σ′))2O = {A(f(?)), R(f(?), f(f(?))), B(f(f(?))), . . .}

. . . . . . . . . . . . . . . . . . . . . . . .

To avoid this situation, the use of singularization [14], a somewhat “less-
harmful” axiomatization of equality, is proposed in [6].

Definition 7. A singularization of a rule ρ is the rule ρ′ that results from per-
forming the following transformation for every variable v in the body of ρ:

– Rename each occurrence of v using different fresh variables v1, . . . , vn,
– pick some j = 1, . . . , n and add the atoms Eq(v1, vj), . . . ,Eq(vn, vj) to the

body of ρ and
– replace any occurrence of v in the head of ρ with vj.

Let Σ be a set of TGDs and let Eq be the set from Example 6. A singulariza-
tion of Σ is a set of TGDs Σ′ which contains Eq and exactly one singularization
of every ρ ∈ Σ. Let Sing(Σ) be the set of all possible singularizations of Σ.

Example 8. Rule A(x)∧B(x)→ ∃y[R(x, y)∧B(y)] from Example 6 admits two
possible singularizations: (i) A(x1) ∧ B(x2) ∧ Eq(x2, x1) → ∃y[R(x1, y) ∧ B(y)]
and (ii) A(x1) ∧B(x2) ∧ Eq(x1, x2)→ ∃y[R(x2, y) ∧B(y)].

Note that, for any Σ′ ∈ Sing(Σ), if Σ′ is MFA, then the oblivious chase of
Σ′ can be used to answer queries on Σ [6]. The use of singularization along with
MFA gives rise to the following acyclicity notions.

Definition 9. For a set of TGDs Σ, if there is some Σ′ ∈ Sing(Σ) which is
MFA, then Σ is said to be MFA∃. If every Σ′ ∈ Sing(Σ) is MFA, then Σ is
MFA∀.



To some extent, the use of singularization solves the problems with equality:
One can check that Σ in Example 6 is MFA∃, but not MFA∀. Nevertheless, due
to the high number of possible singularizations, it is frequently not feasible to
check MFA∃ or MFA∀ membership. A simpler alternative is to check whether⋃
Σ′∈Sing(Σ)Σ

′ is MFA. If that is the case, then Σ is said to be MFA∪. Note

that in the case of Horn-SRIQ TBoxes, |
⋃
Σ′∈Sing(Σ)Σ

′| is actually polynomial

in |Σ| and, as such, MFA∪ is more feasible to check. Thus, we will use MFA∪

as a baseline for the evaluation of the new acyclicity condition RCAn, which is
introduced in the next section.

5 Restricted Chase Acyclicity

While MFA is quite a general acyclicity condition, it has two main drawbacks:

1. It only considers the oblivious chase, which as we have seen in Example 5,
might not terminate (even though the restricted chase does!), and

2. its treatment of equality via singularization is cumbersome and inefficient
in practice. Not only MFA∃ and MFA∀ are difficult to check, but even after
a set of TGDs are established to belong to some MFA subclass, one has to
employ a singularized program for reasoning purposes.

In this section, we present RCAn, an acyclicity notion with neither of these
drawbacks: RCAn verifies termination of the restricted chase of a TBox and does
not require the use of cumbersome axiomatizations of the equality predicate.
Furthermore, unlike MFA, RCAn allows for the presence of cyclic terms in the
chase up to a given depth n.

Since we are primarily interested in termination of the restricted chase of a
Horn-SRIQ TBox, one might wonder why we do not simply check for termina-
tion of the restricted chase for such a TBox with respect to the critical instance,
as it is done in the previous section with the oblivious chase. Unfortunately,
this is not possible: The restricted chase of any set of existential rules always
terminates with respect to the critical instance. Thus, we have to devise more
sophisticated techniques to check the termination of the restricted chase. We
start by introducing the notion of an overchase for a TBox.

Definition 10. A set of facts V is an overchase for some TBox T if and only
if, for every O = 〈T ,A〉, RC(P(O))? ⊆ V.

Given some TBox T , an overchase for T may be intuitively regarded as an
over-approximation of the restricted chase of T .

Lemma 11. If there exists a finite overchase for a TBox, then the restricted
chase of such TBox terminates.

Thus, to determine whether the chase of a TBox T terminates, we introduce
a procedure to compute an overchase for T and a means to check its termination.
We proceed with some preliminary notions and notation.



Definition 12. Let T be some TBox and t a term. Let I(t) be the set of facts
defined as follows: If t is of the form fyρ (s) where ρ = A(x)→ ∃y[R(x, y)∧B(y)],
then I(t) = {A(s), R(s, t), B(t)} ∪ I(s); otherwise, I(t) = ∅. Furthermore, we
introduce the program U(T , t) = 〈R∀T ∪R≈T , I(t)〉.

Intuitively, the restricted chase of the program U(T , t) can be regarded as
some kind of under-approximation of the facts that must occur in the chase
of every program of the form P(〈T ,A〉) where t occurs. I.e., if t occurs in the
restricted chase sequence of any program P(〈T ,A〉), then the facts in the re-
stricted chase of U(T , t) must also occur (up to renaming) in the chase sequence
of such program. Furthermore, due to the special priority of application of the
rules during the computation of the chase, the facts in the restricted chase of
U(T , t) must occur in the restricted chase sequence of every program of the form
P(〈T ,A〉) before any successors of t are introduced.

Example 13. Let O, ρ and υ be the ontology and rules from Example 5. Then,
by Definition 12:

I(fyρ (AI)) = {Film(AI), isProdBy(AI, fyρ (AI)),Producer(fyρ (AI))} and

RC(U(T , fyρ (AI))) = {prod(fyρ (AI),AI)} ∪ I(fyρ (AI)).

All the facts in the restricted chase of U(T , t) occur in the restricted chase
sequence of P(O) before any successors of term fyρ (AI) are introduced. This is
because the rule isProdBy(y, x) → prod(x, y) is applied with a higher priority
than the rule υ = Producer(x)→ ∃y[prod(x, y) ∧ Film(y)].

Given a TBox T and some term of the form fyρ (t), we can in some cases con-
clude that such a term may never occur during the computation of the restricted
chase of every program of the form P(〈T ,A〉) by carefully inspecting the facts
in the set U(T , t).

Definition 14. Let T be a TBox and t a term of the form fyρ (s) where ρ =
A(x)→ ∃y[R(x, y)∧B(y)]. We say that a term t is restricted with respect to T
if and only if there is some term u with {R([s], u), B(u)} ⊆ RC(U(T , s)) where
[s] = [v], if s is replaced by v during the computation of the restricted chase
sequence; and [s] = s, otherwise.

We often simply say that a term is “restricted”, instead of “restricted with
respect to T ,” if the TBox T is clear from the context.

Lemma 15. Let T be a TBox and t a restricted term. Then, for every possible
O = 〈T ,A〉, t /∈ RC(P(O)).

Proof. (Sketch) Let t be a term of the form fyρ (s) where ρ = A(x)→ ∃y(R(x, y)∧
B(y)). We can verify that, if t occurs during the computation of the chase se-
quence, then every fact RC(U(T , s)) will also be included in such chase sequence
before any new terms are introduced. Thus, if t is indeed restricted, there must
be some u with R([s], u) and B(u) occurring in the chase sequence. Therefore,
by the definition of the chase, the term t may never be derived.



∀-rule if there is some TGD of the form ρ = β(x,y)→ η(x) ∈ RT
then VT → ρR(VT ) ∪ VT

∃-rule if there is some TGD of the form ρ = A(x)→ ∃y[R(x, y) ∧B(y)] ∈ RT
and there exists some substitution σ such that (i) A(x)σ ⊆ VT and
(ii) fyρ (x)σ is not restricted with respect to T

then VT → {R(x, fyρ (x)), B(fyρ (x))}σ ∪ VT
≈-rule if there is some EGD β(x,y)→ x ≈ y ∈ RT and there exists some

substitution σ such that β(x,y)σ ⊆ VT
then VT → {Eq(x, y),Eq(y, x)}σ ∪ VT

Eq-rule if there are some terms t, u and ui where i = 1, . . . , n and some
predicate p such that (i) p 6= Eq, (ii) {Eq(t, u), p(u1, . . . , un)} ⊆ VT ,
(iii) dep(t) ≤ dep(u) and (iv) u = uj for some j = 1, . . . , n

then VT → {p(u1, . . . , un)}[u/t] ∪ VT

Fig. 3. Expansion rules for the construction of VT .

Example 16. Let T , ρ and υ be the TBox and rules from Example 5. We proceed
to show that the term fyρ (fyυ (AI)) is restricted. First, we compute the restricted
chase of U(T , fyυ (AI)).

RC(U(T , fyυ (AI))) = {Producer(AI), prod(AI, fyυ (AI)),

Film(fyυ (AI)), isProdBy(fyυ (AI),AI)}

Note that {isProdBy(fyυ (AI),AI),Producer(AI)} ⊆ RC(U(T , fyυ (AI))). Thus,
fyρ (fyυ (AI)) is restricted with respect to T and, by Lemma 15, it may not occur
in the restricted chase of a program of the form P(〈T ,A〉). Furthermore, by
Definition 14, if fyρ (fyυ (AI)) is restricted, then every term of the form fyρ (fyυ (c)),
where c is a constant, is also restricted.

With Definition 14 and Lemma 15 in place, we proceed with the definition
of a procedure to construct an overchase for some given TBox T .

Definition 17. Let T be a TBox. We define VT as the set initially containing
every fact in I?(RT ) which is then expanded by repeatedly applying the rules in
Figure 3 (in non-deterministic order).

Lemma 18. The set VT is an overchase of the TBox T .

Proof. (Sketch) The lemma can be proven via induction on chase sequence of
any ontology of the form O = 〈T ,A〉. Note that, O0

R ⊆ VT by the definition of
VT . It can be verified that, for every possible derivation of a set of facts during
the computation of the chase of O, such facts will always be contained in VT .

Corollary 19. The restricted chase of some TBox T terminates if VT is finite.

Example 20. Let T be the TBox from Example 5. Then VT is as follows.

VT = {Film(?), isProdBy(?),Producer(?), prod(?, ?),

isProdBy(?, fyρ (?)),Producer(fyρ (?)), prod(?, fyυ (?)),Producer(fyυ (?))}



Note that terms fyρ (fyυ (?)) and fyυ (fyρ (?)) are restricted and thus, they are not
included in VT . Since VT is finite, we can conclude termination of the restricted
chase of the TBox T .

In the previous example, we were able to ascertain termination of the re-
stricted chase of T after verifying that the set VT is finite. A sufficient condition
for finiteness of VT is to only allow cyclic terms up to a certain depth in this
set. We use such condition to formally define RCAn.

Definition 21. A TBox T is RCAn if and only if there are no n-cyclic terms
in VT . An ontology 〈T ,A〉 is RCAn if and only if T is RCAn.

Theorem 22. If a TBox T is RCAn then the restricted chase of T terminates.

We proceed with several results regarding the complexity of deciding RCAn

membership and reasoning over RCAn ontologies.

Theorem 23. Deciding whether some TBox T is RCAn is in ExpTime.

Theorem 24. Let O = 〈T ,A〉 be some RCAn ontology and γ a query. Then,
checking whether O |= γ is ExpTime-complete.

To close the section, we present several results in which we theoretically
compare the generality of RCAn to MFA∪.

Theorem 25. MFA∪ does not cover RCA1.

Proof. The TBox T from Example 5 is RCA1 but not MFA∪.

Theorem 26. If T is MFA∪ then T is RCAn for every n > |T ∃| where T ∃ is
the set of all existential axioms in T .

6 Evaluation

6.1 An Empirical Comparison of RCAn and MFA∪

In this section we include an empirical comparison of the generality of RCAn

and MFA∪. For our experiments, we use the TBoxes of the ontologies in the
OWL Reasoner Evaluation workshop (ORE, https://www.w3.org/community/
owled/ore-2015-workshop/) and Ontology Design Patterns (ODP, http://

www.ontologydesignpatterns.org) datasets. The former is a large repository
used in the ORE competition containing a large corpus of ontologies. The latter
contains a wide range of smaller ontologies that capture design patterns com-
monly used in ontology modeling. The ORE dataset is rather large, and thus
we restrict our experiments to the 294 ontologies with the smallest number of
existential axioms, while skipping the 77 ontologies with the largest number of
existential axioms. The number of such axioms contained in an ontology is a
useful metric to predict the “hardness” of acyclicity membership tests; i.e. run-
ning these experiments would be very time-intensive, while our results, reported



ORE
∃-Axioms Avg. Size Count MFA∪ RCA1 RCA2 RCA3

1-5 175 70 70.0 87.1 92.9 92.9
6-10 219 48 58.3 83.3 83.3 83.3
11-25 916 54 83.3 85.2 91 91
26-100 521 42 54.8 59.5 61.9 61.9
101-500 1290 42 26.2 26.2 28.6 28.6
501-1922 5052 38 60.5 60.5 60.5 60.5
1-1922 1362 294 60.9 70.1 73.1 73.1

ODP
∃-Axioms Size Total MFA∪ RCA1 RCA2 RCA3

1-12 39 18 73.7 100.0 100.0 100.0

Fig. 4. Results for the ORE and ODP Repositories.

below, already indicate that for such very hard TBoxes MFA∪ and RCAn will
likely not differ much (while they differ significantly for ontologies with a lower
count of existential axioms).

Only Horn-SRIQ TBoxes which cannot be expressed in any of the OWL
2 profiles were considered in our experiments. This is because all OWL 2 RL
TBoxes are acyclic (with respect to every applicable acyclicity notion known to
us), and there already exist effective algorithms and efficient implementations
that solve CQ answering over OWL 2 EL and OWL 2 QL ontologies [11, 17, 18]
(albeit, if these do not include complex roles).

The results from our experiments are summarized in Figure 4. The evaluated
TBoxes are sorted into brackets depending on the number of existential axioms
they contain. For each bracket we provide the average number of axioms in the
ontologies (“Avg. Size”), the number of ontologies (“Count”), and, for every
condition “X” considered, the percentage of “X acyclic” ontologies

RCA2 and RCA3 turned out to be indistinguishable with respect to the
TBoxes considered and thus, we limit our evaluation to RCAn with n ≤ 3. Our
tests reveal that RCA2 is significantly more general than MFA∪, particularly
when it comes to TBoxes with a low count of existential axioms. However note
that reasoning over ontologies with few (existential) axioms is in general not
trivial: All of the ontologies considered in our materialization tests (see Figure
5) contain less than 20 existential axioms. For TBoxes containing from 1 to 10
existential axioms in the ORE dataset, more than half of the ontologies which
are not MFA∪ are RCA2. Furthermore, the 4 ontologies in the ODP dataset
which are not MFA∪ are RCA2. Interestingly, in both repositories we could not
find any ontology that is MFA∪ but not RCA1. Thus, with respect to the TBoxes
in our corpus, RCA1 already proves to be more general than MFA∪.

In total, we looked at 312 ontologies, 62% and 75% of which are MFA∪ and
RCA2, respectively. To gauge the significance of this improvement, we roughly
compare these numbers with the results presented in [6]. In that paper, the
authors consider a total of 336 ontologies, of which 49%, 58% and 68% are



Triples Restricted Oblivious PAGOdA Konc.
Count C Q1-Q4 C Q1-Q4 P Q1-Q4 R

2.8M 10 0 0 0 0 45 0 0 TO 0 89 OM 4 1 0 75
5.1M 21 0 0 0 0 138 0 0 TO 3 147 OM 1 2 0 214
6.7M 28 0 0 0 0 1029 2 0 TO 0 203 OM 2 3 1 506
8.1M 36 37 0 0 0 TO - - - - 263 OM 2 2 6 1347

9.0M 37 0 0 0 0 OM - - - - 113 1 1 1 1 198
17.8M 72 0 0 0 0 OM - - - - 232 2 2 3 3 987
26.2M 107 0 0 0 0 OM - - - - 378 4 10 12 5 3491
33.9M 141 0 1 0 0 OM - - - - 521 6 21 21 12 TO

2.8M 8 0 0 0 1 70 0 0 0 74 51 OM 0 0 0 51
5.7M 16 0 0 0 2 158 1 1 1 154 99 OM 1 1 0 118
8.4M 26 0 0 0 3 242 1 1 2 186 142 OM 2 1 1 220

11.4M 37 1 0 0 5 341 2 2 3 311 197 OM 3 1 1 315

2.2M 11 0 0 0 0 56 0 0 0 1 61 28 0 TO 1 53
4.5M 27 2 0 0 0 133 0 0 1 2 121 60 0 TO 2 125
6.6M 42 3 1 1 0 216 1 1 2 3 186 TO 0 TO 5 292
8.9M 58 5 1 2 1 310 1 2 4 6 260 TO 0 TO 5 644

Fig. 5. Results for Reactome, Uniprot, LUBM and UOBM (sorted from top to bottom
in the above table).

weakly acyclic [7], jointly acyclic [12] and MFA∪, respectively. Even though the
comparison is not over the same TBoxes, we verify that the improvement in
generality of our notion is in line with previous iterations of related work.

6.2 A Materialization Based Reasoner

We now report on an implementation of the restricted chase as defined in Sec-
tion 3. Moreover, we also present an implementation of the oblivious chase with
singularization, i.e., the chase as it must be used if we employ MFA∪ (see Sec-
tion 4). We use the datalog engine RDFOx [15] in both implementations.

We evaluate the performance of our chase based implementations against
Konclude [19], a very efficient OWL DL reasoner, and PAGOdA [20], a hy-
brid approach to query answering over ontologies. PAGOdA combines a datalog
reasoner with a fully-fledged OWL 2 reasoner in order to provide scalable ’pay-
as-you-go’ performance and is, to the best of our knowledge, the only other
implementation that may solve CQ answering over Horn-SRIQ ontologies with
completeness guarantees, albeit only in some cases. Nevertheless, PAGOdA was
able to solve all the queries (that is, all of which for which it did not time-out
or run out of memory) in this evaluation in a sound and complete manner.

We consider two real-world ontologies in our experiments, Reactome and
Uniprot, and two standard benchmarks, LUBM and UOBM, all of which con-
tain a large amount of ABox axioms. Axioms in these ontologies which are not
expressible in Horn-SRIQ were pruned. Furthermore, one extra axiom had to
be removed from Uniprot for it to be both MFA∪ and RCA1 acyclic.



The results from our experiments are summarized in Figure 5. For each on-
tology, we consider four samples of the original ABox. The number of triples
contained in each one of these is indicated at the beginning of each row, un-
der the column “Triples Count”. As previously mentioned, we consider four
different implementations: These include the two aforementioned variants of
the chase (“Restricted” and “Oblivious”), PAGOdA (“PAGOdA”) and Kon-
clude (“Konc.”). For both chase based implementations, we check the time it
takes to compute the chase (“C”) and then the time to solve each of the four
queries crafted for each ontology (“Q1-Q4”). In a similar manner, we list the
time PAGOdA takes to preprocess each ontology (“P”) plus the time it takes to
answer the queries (“Q1-Q4”). Finally, we list the time Konclude takes to solve
realization; i.e., the task of computing every fact of the form A(a) entailed by an
ontology (note that Konclude cannot solve arbitrary CQ answering). Time-outs,
indicated with “TO,” were set at 1 hour for materialization and 5 minutes for
queries. We make use of the acronym “OM” to indicate that an out-of-memory
error occurred. Sometimes, a time-out or an out of memory error prevents us
from answering the queries: Such a situation is indicated with “-.” All exper-
iments were performed on a MacBook Pro with 8GB of RAM and a 2.4 GHz
Intel Core i5 processor.

For each ontology, we consider four different queries which are listed in the
App. Section ?? included in the extended technical report. A summarized de-
scription of these queries, in which we ignore unary predicates, can be found in
Figure 6. For every ontology, the query Q1 is of the form ∃x, y, zR(x, y)∧R(z, y)
where R is an existentially quantified role occurring in the TBox. It appears that
PAGOdA has trouble with this kind of query, whereas the chase based imple-
mentations efficiently solve it in all but one case. This is probably due to the
design of the hybrid reasoner which considers under and over approximations to
provide complete answers to CQ: It appears that queries as the one previously
considered find a large number of matches in the upper bound which slows down
the performance of this reasoner. Queries Q2, and Q3 and Q4 are acyclic and
cyclic, respectively (a query is acyclic if the shape of its body is acyclic). Even
though it is well-known that answering acyclic CQs can be reduced to satisfi-
ability [5], we included such a type of query in our evaluation in an attempt
to verify whether solving acyclic queries is simpler than cyclic queries (this is
indeed the case theoretically). Nevertheless, our experiments do not reveal any
significant differences.

First, note that computing the restricted chase employing renaming tech-
niques to deal with equality is way more efficient than computing the oblivious
chase with singularization. We conjecture that this is because the efficient built-
in capabilities of RDFOx to deal with equality and the fact that the rules that
result from the application of singularization are rather cumbersome. Second, see
that our proposed algorithm is also superior to PAGOdA when it comes to CQ
answering. Third, the implementation of the restricted chase outperforms the
DL reasoner Konclude by an order of magnitude when it comes to solve materi-
alization of the larger samples considered (note that, by computing the chase of



q1(w, y) : pE(w, z), pE(y, z) q1(x, y) : cC(x, z), cC(y, z)

q2(x, z) : mPE(z, w),mPE(z, w), p(y, z), pC(x, y) q2(x) : tF(w, x), lO(x, y), d(x, z)

q3(x, z) : fL(x,w), fL(x, y), sIB(w, z), sIB(y, z) q3(x) : tF(w, y), tF(w, x), d(y, z), d(x, z)

q4(x, z) : p(w, z), p(y, z), pC(x,w), pC(x, y) q4(x) : lI(x,w), cC(w, z), lI(x, y), cC(y, z)

q1(x, z) : wF(x, y),wF(z, y), pA(x, z) q1(x, y) : tC(x, z), tC(y, z)

q2(x) : a(x, y), tO(y, z),mO(y, w) q2(x) : tAO(x, y), pA(z, x), tC(w, y),wF(x, v)}
q3(x, z) : tO(y, z), a(x, y), tC(x, z) q3(x, y) : iFO(x, y), l(x, z)

q4(x) : pA(x, z), pA(x, y), a(z, y), q4(x, y) : hDDF(x, z), hDDF(y, z), hMDF(x,w),

mO(z, w),mO(y, w) hMDF(y, w),wF(x, v),wF(y, v)

Fig. 6. Summarized queries for Reactome (top left), Uniprot (top right), LUBM (bot-
tom left) and UOBM (bottom right).

a program we already solve materialization). It is clear that our implementation
also scales much better than the OWL DL reasoner.

7 Conclusions and Future Work

We introduce a novel acyclicity notion for Horn-SRIQ TBoxes and prove it to
be, theoretically and empirically, more general than previously existing condi-
tions [6]. To the best our knowledge, this is the first acyclicity notion (for on-
tologies or rules) which considers termination of the restricted chase algorithm.
Moreover, our contribution is also relevant in practice: Based on our ideas, we
produce an implementation which vastly outperforms state-of-the-art reasoners.

As future work, we plan to lift our acyclicity condition to the case of general
rules; i.e., not only those resulting from the translation of Horn-SRIQ TBoxes.
We also intend to work on further optimizing our implementation of the RCAn

membership check and our restricted chase based algorithm.
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